MACHEREY-NAGEL

Rapid Tests

Welcome

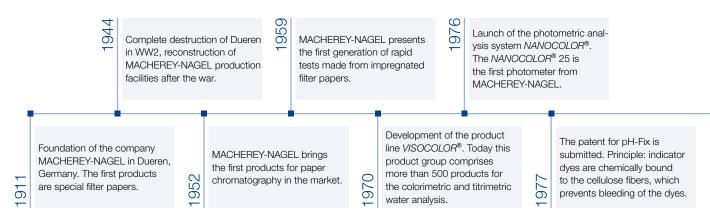
Dear reader,

we are very pleased to announce the arrival of our new rapid tests catalog, that was created from scratch.

All of our tests can be found listed by parameters in the first part of the catalog. So you can directly find the correct test for your needs. In the second part of the catalog we have compiled additional details for each individual test and equipment for you.

We are a successful manufacturer of water analysis- and rapid tests for more than 60 years. A continuous development has always been important to us to meet your today's and future needs.

If you have further questions or need additional advice, you can contact us at any time. Our friendly team of experts in Dueren and our competent sales team are very happy to be at your service.


Technical Support and Customer Service

Telephone: +49 24 21 969-332
E-mail: csc@mn-net.com
Homepage: www.mn-net.com

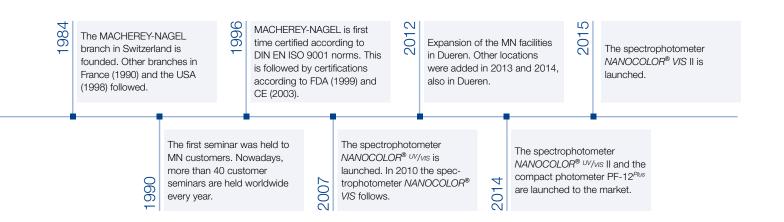
Enjoy our new catalog; we are pleased to listen to your feedback!

Your Water Analysis team

Timeline MACHEREY-NAGEL

MACHEREY-NAGEL

MACHEREY-NAGEL was founded in 1911 in Dueren (Germany) as a manufacturer of special filter papers. Since then we have established ourselves as one of the world's leading companies in the field of chemical and biomolecular analysis. In addition to our product lines for rapid tests and water analysis we offer a wide selection of products for filtration, chromatography and bioanalysis.


We are able to look back on decades of experience in the field of rapid tests and water analysis. In the 1950s we launched the first generation of rapid tests, in 1976 our first photometer. Over the years we have steadily refined and improved our products. This makes us one of the leading and most reliable manufacturers for water analysis.

Our headquarters are located in Dueren. Our commercial and administrative areas, research and development departments as well as our productions are based there. In addition we run three branches in Switzerland, France and the USA with more than 600 employees. Furthermore, a globally operating network of qualified and specially trained distributors in more than 150 countries, ensure worldwide availability of MN products and services.

As a privately owned company, the term family is of highest importance to us. We understand all customers as part of the MN family – our philosophy of a successful, trusting, and long term cooperation. This fundamental understanding of customer relationships goes hand in hand with our focus on quality. For more than 100 years, our customers can rely on products "Made in Germany". From conviction, we think and act in the long term.

Our personal service offers wealth of expertise and friendly advise, which creates an additional value for our customers. From the initial contact throughout the entire lifetime of our products, our employees are available for customers and offer advise and support.

MACHERERY-NAGEL offers a unique combination of expertise and partnership, which makes cooperation for you very successful and pleasant.

Overview	6
Measuring ranges	6
Application areas	
NANOCOLOR® photometers	12
NANOCOLOR® heating blocks	14
Analytical quality assurance	16
Platforms	18
Parameters A–Z	20
Test papers and test strips	EC
Test papers and test strips	
pH tests	
Semi-quantitative test strips	
Qualitative test papers	68
Visual test kits	72
VISOCOLOR®	74
Photometric tests	9.4
NANOCOLOR®	86
Microbiological tests	110
Dia Fiv®	440

Devices	116
Photometers	118
Heating blocks	134
Reflectometer	
Luminometer	146
Mobile mini-labs	1 40
Reagent cases	150
Annex	158
NANOCOLOR® App	160
Barcode register	162
Index of catalog numbers	170
Legal notices	174

Measuring ranges

.001 mg/L	0.01 mg/L	0.1 mg/L	1 mg/L
		VISOCOLOR® alpha	ì
		uated visually by compa	titrimetric tests. These are eval- rison with a color scale or drop of mixed reagents often only one
		reagent is required.	s of mixed reagents often only one
		VISOCOLOR® ECO are colorimetric and titrimetric test	s that are evaluated by
		comparison with a color scale or reagents enable accurate analysis of	drop counting. Single
VISOCOL			
sensitivity is	ensitive colorimetric and titrin achieved by using longer me ensitive reagents.		
		NANOCOLOR® star	

An extremely broad measuring range can be covered.

10 mg/L 100 mg/L 1000 mg/L 10000 mg/L

Qualitative test papers

serve to check the presence or absence of chemical compounds. A change in color indicates that the concentration of the tested substance is above the detection limit.

QUANTOFIX® tests trips

enable semi-quantitative determinations of a variety of parameters. They can be used immediately. No additional accessories are required.

NANOCOLOR® tube tests

contain already pre-dosed reagents, whereby a high safety and measurement accuracy is achieved. The measurement is carried out by photometry in a test tube.

	,	(1)		/ /	<u></u>	//	/		/, /	/
	KEN SE INC.	Sill state of the	denigos Heneros	de dicolico	Medicular Medicular	On we was	o ningled was	to doing to be	tood industry	
Parameter	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ 53			Mr. ilio	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 4 4°	/ 8º	/ 40	
Alkalinity			•						_	
Aluminum			•		•				•	
Ammonium	-	-			•	-	-		-	
AOX					-		-			
BOD ₅				-	-		-			
Bromine										
Cadmium					-				•	
Calcium		-								
Carbonate hardness										
Chlorine dioxide										
Chloride		-	-						-	
Chlorine			-							
Chromium / Chromate										
Cobalt										
COD					-					
Color			-		-					
Copper										
Cyanide										
Cyanuric acid										
DEHA										
Detergents										
Ethanol										
Fluoride										
Formaldehyde										
Hydrazine										
Hydrocarbons										
Iron										
Lead										
Magnesium										
Manganese										
Methanol										
Molybdenum										
Nickel										
Nitrate		-					-			
Nitrite										
Organic acids	_				_					
Organic complexing agents						_	_		_	
Oxygen										
Ozone	_		_					_		
Peroxides			-	-						
	_	-				_	_			
pH		•	-		-	-	-	•	-	
Phenols										

, W	Leafted include	cso make	Sitoconos	. Qaga indist	digital digital	Smithing of	SOE MARIE TO ASSESSED	division not be division of the second		Control of the contro
Lardille	\ egitte	88 N	Sural	Q0Q0	Skatt Anstr	Swift	10 tille	Oinki	Course, disper	(Aprill,
/	/		/	/	/	/				Alkalinity
										Aluminum
										Ammonium
										AOX
										BOD ₅
										Bromine
-										Cadmium
				-						Calcium
			-	-		-	-			Carbonate hardness
						-		-		Chlorine dioxide
	-		-		-					Chloride
										Chlorine
-										Chromium / Chromate
			-							Cobalt
-										COD
										Color
										Copper
										Cyanide
										Cyanuric acid
										DEHA
	-		-							Detergents
										Ethanol
										Fluoride
										Formaldehyde
										Hydrazine
										Hydrocarbons
			•							Iron
-					•					Lead
										Magnesium
										Manganese
										Methanol
										Molybdenum
-								-		Nickel
	•		•		•				•	Nitrate
										Nitrite
				-						Organic acids
			-							Organic complexing agents
										Oxygen
				-		-		-		Ozone
	-	-	-	-	-	-		-		Peroxide
	-	-	-	-	-	-	-	-	-	рН
-										PhenoIs

	ka k		die die sie sie sie sie sie sie sie sie sie s	the lied in the	Wildright Control of the Control of		S MINITED TO SERVICE T	Bolletelan	get Lood in dette	,
Parameter Phosphate	bo. for	/ %	<i>\</i>	\ \(\text{O} \)	Mr. ilip	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>		
POC	-	-	-		-	-	-			
Potassium									-	
Residual hardness								-		
Silica										
Silver										
Starch										
Sulfate			-							
Sulfide										
Sulfite										
Surfactants					-					
Thiocyanate										
Tin										
TOC										
total Hardness										
total Nitrogen				•	-	•	-			
TTC						•				
Turbidity										
Zinc										

/			/		/		/	/		<u> </u>
Jandin's	e ditter indus	So was	Sitioge Miles	2000 judest	Startagist	Shifting S	os lindistr	Ointino mic	Se de la companya de	S idi
/								,		Phosphate
										POC
		-					-			Potassium
		-	-	-	-					Residual hardness
		-								Silica
										Silver
										Starch
		-							-	Sulfate
	-	-	-				-			Sulfide
										Sulfite
				-						Surfactants
				-						Thiocyanate
		-								Tin
-	-	-	-		-					TOC
	-	-	-	-				-	-	total Hardness
		-	-		-					total Nitrogen
										TTC
		-			-	-		-		Turbidity
										Zinc

NANOCOLOR® photometers

Water analysis made easy

NANOCOLOR® photometers by MACHEREY-NAGEL are universally applicable in all areas of water and waste water analysis. In addition to the analysis of urban and industrial waste water, drinking water, process water, surface water, ground water as well as cooling and boiler feed water, NANOCOLOR® photometers can also be used for quality control in various industries such as food and beverage industry. The complete analysis can be performed reliably and quickly with just one device. In addition to the standard methods, NANOCOLOR® photometers can also be used for special applications such as color measurements.

Overview

Photometer	REF	Туре	Wavelengths	Wavelength accuracy	Spectral bandwidth	Operation	Display	Data memory ¹⁾	Platform 2)
■ PF-3 COD	919 342	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	П
■ PF-3 Drinking Water	919 343	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO
■ PF-3 Fish	919 345	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO
■ PF-3 Pool	919 340	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO
■ PF-3 Soil	919 341	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO
■ PF-12 ^{Plus}	919 250	Filter- photometer	7 (+ 1)	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	1000	п, со
■ <i>NANOCOLOR®</i> 500 D	919 500	Filter- photometer	10 (+ 2)	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	500	Π, ST
■ NANOCOLOR® VIS II	919 650	Spectro- photometer	320–1100 nm	± 1 nm	< 4 nm	Touch screen	HD LCD	5000	TT, ST
NANOCOLOR® UV/vis II	919 600	Spectro- photometer	190–1100 nm	± 1 nm	< 2 nm	Touch screen	HD LCD	5000	TT, ST

¹⁾ Number of measurements in data memory refers to measurement results of cuvette tests. For further information about data memory of the instruments please see the respective manual. 2) CO: Colorimetric tests - only VISOCOLOR® ECO/TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests

O to other	Molike Mills	QQ .S		ON ALIVE		Main Son Mai	Sparied States	s to Cold to	September 1	Mill State of the	\$ KSUSL	/kh	zroce ze
		/										, .	7
-	-		-		-	-				-			
	•		-		•					•			
-	•				•	-							
-	•		•		•	-				-			
ŀ			٠	ì	٠	٠			٠				
									-			•	

NANOCOLOR® heating blocks

Reliable sample digestion for photometric analysis

An important step in the sample preparation for photometric water analysis is the thermal decomposition of the water sample. The heating blocks NANOCOLOR® VARIO 4 and NANOCOLOR® VARIO C2 allow a fast and safe performance of all required sample digestions in the water and wastewater analysis.

Within of metal analysis, the NANOCOLOR® VARIO C2 M can be used for the digestion of larger sample volumes. This heating block has two 22 mm and eight 16 mm bores for the digestion of large sample volumes.

The NANOCOLOR® VARIO HC has an integrated active cooling which enables an extremely short cooling time. Thereby, an even faster digestion is possible which means a significant time saving.

The NANOCOLOR® VARIO Mini is a compact thermal block, which is suitable for mobile analytics due to its size.

Overview

Heating block	REF	Parallel digestions	Heating units	Bores 16 mm	Bores 22 mm	Warm-up time (25 °C → 160 °C)	Temperature range	Operation
■ NANOCOLOR® VARIO Mini	919 380	6	1	6	-	25 min	70–160 °C	Plastic foil keyboard
■ NANOCOLOR® VARIO C2	919 350	12	1	12	-	10 min	40-160 °C	Touch screen
■ NANOCOLOR® VARIO C2 M	919 350.1	10	1	8	2	10 min	40-160 °C	Touch screen
■ NANOCOLOR® VARIO 4	919 300	24	2	24	-	10 min	40-160 °C	Touch screen
■ NANOCOLOR® VARIO HC	919 330	12	1	12	-	10 min	40–160 °C	Touch screen

	Display	QL Office	May Comment	OP OP OP	to day	Solin	ancied and in the second	Mains	A SOUTH AND	With State of the	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, peditodot
C	Graphic display				•							
L	.CD											
L	.CD											
L	.CD		-									
L	LCD											

Analytical quality assurance

IQC (Internal quality control)

Operating methods have become an approved way of system control and monitoring. The fundamental advantage is the rapid information compared to the instrumentally complex and time consuming standard methods. Further benefits are the lower demand of reagents, lower costs as well as a rapid performance of the test. The use of operating methods can reduce the amount of reference methods significantly.

Internal quality control serves for the verification of the whole analytical system. This accounts for the reagents and test kits, the devices which are used for analysis as well as for the personal performance. IQC is important in order to ensure correct results and to fulfill validation requirements. Several measures can be used for internal quality control and are described on the following pages.

Multiple determinations

With multiple determinations the precision of a measurement can be checked. Outliers are detected immediately and tendencies or scatters become visible.

Products for quality assurance

Applicable for all NANOCOLOR® tests

Standard measurements

By regular standard measurements, the way you work and the overall analysis system can be checked. In this case, a standard solution with a known concentration of a parameter is investigated.

Products for quality assurance

NANOCONTROL single and multi standards

Plausibility checks by dilution and standard addition

Dilutions and standard additions are suitable procedures to safeguard measurement values. These methods are employed when there are doubts about the accuracy of results.

Products for quality assurance

NANOCONTROL standard addition

Parallel measurements

In parallel measurements a sample is measured simultaneously with internal operational analysis and in an external independent laboratory. This results in a direct comparison. The measurement results should thereby be safeguarded by multiple determinations.

Products for quality assurance

Applicable for all NANOCOLOR® tests

Inspection equipment monitoring (photometer/heating blocks)

In the inspection equipment monitoring all devices which are used in the operational analysis, are monitored and tested (e.g. photometers, heating blocks and pipettes). This is done by appropriate means for operability.

Products for quality assurance

NANOCONTROL NANOCHECK NANOCONTROL NANOTURB NANOCOLOR® T-Set NANOCOLOR® USB T-Set

Personal information sheet / training

The education and training of laboratory staff has become a high priority within internal quality control. The focus of training is the understanding of analytical correlations, and the detection of possible error sources.

Products for quality assurance

MN seminars (for free)

Platforms

Products for pH determination

For pH determination mainly test papers and test strips are used. By simply dipping the test strip into a solution, the pH value can be determined safely. The use of different indicators causes a color reaction on the test strip. In most cases the evaluation is carried out by a comparison with a color

Qualitative test papers

Qualitative test papers provide information on whether a particular substance is present or not. By immersing the test paper into the sample solution a color change occurs when the concentration of the investigated substance is above a specific detection limit.

Semi-quantitative tests strips

Test papers and test strips for semi-quantitative analysis are extremely simple to handle. They are based on the principle of "dip and read". They are available for a variety of parameters and comply with all requirements of a modern rapid test. The evaluation of these tests is carried out by a comparison with a color scale.

Colorimetric test kits

Colorimetric tests are based on a color development of the sample after the addition of reagents. The evaluation of these tests is carried out by a comparison with a color chart.

Titrimetric test kits

Titrimetric tests are based on the principle of the addition of reagent until a color change occurs. For the evaluation of these tests no separate color card is required. The amount of consumed reagent is directly related to the measured value.

NANOCOLOR® tube tests

Tube tests are photometric rapid tests with pre-dosed reagents. The evaluation of these tests is carried out photometrically in 16 mm test tubes.

NANOCOLOR® standard tests

Standard tests are photometric reagent sets. They contain all the reagents necessary for the analysis. Evaluation is carried out photometrically in precision cells with up to 50 mm layer thickness.

Micobiological tests

Micobiological tests are based on enzymatic reaction or metabolic processes of bacteria. The evaluation of these tests is carried out with an oxygen probe or with the help of a luminometer.

Acetic acid (CH₃COOH)

See Organic acids (page 40)

Acid binding capacity

See Alkalinity (page 23)

Acid capacity

See Acidity (page 22)

Acidity

Acidity is a measure for the amount of acid in water. It gives the amount of NaOH that needs to be added to cause a color change of the pH indicator phenolphthalein (pH = 8.2)

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® HE Acidity AC 7	TI	0.2–7.2 mmol/L H ⁺	200	915 006

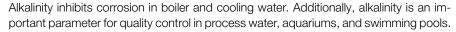
Active oxygen

"Active oxygen" and potassium monopersulfate (KMPS), respectively, is widely used as a green alternative to chlorine in the disinfection of swimming pools.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Active oxygen	HT	0 · 4 · 8 · 15 · 25 mg/L KMPS	100	913 49

Air humidity (relative)

Products that are sensitive to moisture must be kept dry. To achieve this, such products are often packed in PE bags with a desiccant. Moisture indicators allow a simple, visual control whether the product is still kept dry. Conventional moisture indicators are based on cobalt chloride, which is classified as toxic and carcinogenic. The cobalt chloride-free moisture indicators do not contain toxic or carcinogenic substances.


Product	Platform	Measuring range	Number of tests	REF
■ Moisture indicator	HT	$20 \cdot 30 \cdot 40 \cdot 50 \cdot 60 \cdot 70 \cdot 80 \%$ relative humidity	12	908 01
■ Moisture indicator	QT	> 8 % relative humidity	1000	908 901
Non-toxic moisture indicator without cobalt chloride	QT	> 8 % relative humidity	1000	908 903

Alcohol

See Ethanol (page 32) and Methanol (page 37).

Alkalinity

Alkalinity is a measure for the buffer capacity of natural waters. It gives the amount of acid that needs to be added to cause a color change of the indicator methylorange (m-value, pH 4.3) or phenolphthalein (p-value, pH 8.2). Alkalinity is mainly caused by a combination of carbonate, bicarbonate, and hydroxide ions. If the alkalinity is high, the addition of acids or bases has only a little influence on the pH.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Carbonate hardness	HT	0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e	100	913 23
■ QUANTOFIX® LubriCheck	HT	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	100	913 36
Swimming pool test 3 in 1	HT	Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO_3 pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	907 52
Swimming pool test 5 in 1	HT	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	907 59
■ VISOCOLOR® alpha Carbonate hardness	TI	1 drop equals 1.25 °e	100	935 016
■ VISOCOLOR® ECO Alkalinity TA 2)	CO	5–250 mg/L CaCO ₃	100	931 204
■ VISOCOLOR® ECO Carbonate hardness	TI	1 drop equals 1.25 °e	100	931 014
■ VISOCOLOR® HE Alkalinity AL 7	TI	0.2–7.2 mmol/L OH ⁻	200	915 007
■ VISOCOLOR® HE Carbonate hardness C20	TI	0.2–7.2 mmol/L H ⁺	200	915 003
NANOCOLOR® Carbonate hardness 15	ТТ	1.25–18.75 °e/0.4–5.4 mmol/L H ⁺	20	985 015
²⁾ Only photometrically evaluable, with the photometers PF-3 and /	or PF-12/PF-12 ⁶	Plus _		

Aluminum (Al3+)

Water-treatment plants use aluminum potassium sulfate (Alum) in order to flocculate suspended solids. The level of aluminum in finally treated drinking water may increase because of this process and therefore has to be tested. Depending on national regulations, different aluminum concentrations are tolerated in industrial effluents. In natural waters, the concentration of aluminum compounds is usually low.

Product	Platform	Measuring range	Number of tests	REF
Aluminum test paper	QT	$> 10 \text{ mg/L Al}^{3+}$	100	907 21
QUANTOFIX® Aluminum	HT	$0\cdot5\cdot20\cdot50\cdot200\cdot500~\text{mg/L Al}^{3+}$	100	913 07
■ VISOCOLOR® ECO Aluminum	CO	0 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Al³+	50	931 006
■ <i>NANOCOLOR®</i> Aluminum 07	ТТ	0.02-0.70 mg/L Al ³⁺	19	985 098
■ NANOCOLOR® Aluminum	ST	0.01–1.00 mg/L Al ³⁺	250	918 02

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Ammonia (NH₄+)

In surface and ground waters, ammonium ions are an indication for the decomposition of animal or vegetable matter. High ammonia concentrations in surface waters can indicate contamination from waste water treatment plants, fertilizer runoff, or industrial effluents. Excess ammonia levels are toxic to aquatic life.

Product	Platform	Measuring range	Number of tests	REF
Ammonium test paper	QT	$>$ 10 mg/L NH $_4$ ⁺	200	907 22
■ Ammonia test	HT	0 · 0.5 · 1 · 3 · 6 mg/L NH ₄ +	25	907 14
QUANTOFIX® Ammonium 3)	HT	0 · 10 · 25 · 50 · 100 · 200 · 400 mg/L NH ₄ +	100	913 15
■ VISOCOLOR® alpha Ammonium	CO	0 · 0.2 · 0.5 · 1 · 2 · 3 mg/L NH ₄ +	50	935 012
■ VISOCOLOR® ECO Ammonium 15 1)	CO	0 · 0 · 5 · 1 · 2 · 3 · 5 · 7 · 10 · 15 mg/L NH ₄ +	50	931 010
■ VISOCOLOR® ECO Ammonium 3 ¹)	CO	0 · 0.2 · 0.3 · 0.5 · 0.7 · 1 · 2 · 3 mg/L NH ₄ ⁺	50	931 008
■ VISOCOLOR® HE Ammonium	CO	0.0 · 0.02 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L NH ₄ +	110	920 006
■ NANOCOLOR® Ammonium 2000	П	300–1600 mg/L NH ₄ -N	20	985 002
■ NANOCOLOR® Ammonium 200	П	30–160 mg/L NH ₄ -N	20	985 006
NANOCOLOR® Ammonium 100	П	4–80 mg/L NH ₄ -N	20	985 008
■ <i>NANOCOLOR</i> ® Ammonium 50	П	1–40 mg/L NH ₄ -N	20	985 005
NANOCOLOR® Ammonium 10	П	0.2–8.0 mg/L NH ₄ -N	20	985 004
■ <i>NANOCOLOR®</i> Ammonium 3	ТТ	0.04-2.30 mg/L NH ₄ -N	20	985 003
■ NANOCOLOR® Ammonium	ST	0.01–2.0 mg/L NH ₄ -N	100	918 05

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Pke}. Measuring range can differ in photometrical evaluation.
³⁾ Also suitable for evaluation on QUANTOFIX[®] Relax. Measuring range on QUANTOFIX[®] Relax can differ from visual range.

Anionic detergents

See Surfactants (detergents) (page 46)

Antimony (Sb³⁺)

Antimony is used in lead alloys, batteries, bullets, solder, pyrotechnics, and semiconductors.

Product	Platform	Measuring range	Number of tests	REF
Antimony test paper	QT	$> 5 \text{ mg/L Sb}^{3+}$	200	907 23

AOX (adsorbable organically bound halogens)

AOX represents the sum of organically bound halogens (chlorine, bromine, iodine) which are adsorbable to a suitable adsorbent. It is an important parameter for the control of water quality and sludge. The result is given in mg/L chloride.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® AOX 3	TT	0.01-3.0 mg/L AOX	20	985 007

Aquarium parameters, multi test

The determination of total hardness, carbonate hardness (alkalinity) and pH provides a good overview on the water quality of an aquarium.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX [®] Multistick for aquarium owners	HT	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	100	913 26
■ QUANTOFIX [®] Multistick for aquarium owners	HT	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	25	913 27

Arsenic (As^{3+/5+})

As a naturally occurring element, arsenic is widely distributed in the earth's crust. Organic arsenic compounds can be used as pesticides.

Arsenic is toxic and causes skin diseases, keratosis, and melanoma. Therefore, arsenic levels have to be monitored regularly in drinking water. The WHO recommends a limit for drinking water of 0.01 mg/L arsenic.

Product	Platform	Measuring range	Number of tests	REF
Arsenic test paper	QT	> 0.5 µg As	200	907 62
■ QUANTOFIX® Arsenic 50	HT	0 · 0.05 · 0.1 · 0.5 · 1.0 · 1.7 · 3.0 mg/L As ^{3+/5+}	100	913 32
QUANTOFIX® Arsenic 10	HT	0 · 0.01 · 0.025 · 0.05 · 0.1 · 0.5 mg/L As ^{3+/5+}	100	913 34
■ QUANTOFIX® Arsenic Sensitive	HT	0 · 0.005 · 0.01 · 0.025 · 0.05 · 0.1 · 0.25 · 0.5 mg/L As ^{3+/5+}	100	913 45

Ascorbic acid (vitamin C)

Ascorbic acid or vitamin C is found in many foods and vegetables. Often it is added to juice or fruits as stabilizing and reducing agent.

Product	Platform	Measuring range	Number of tests	REF		
QUANTOFIX® Ascorbic acid 3)	HT	0 · 50 · 100 · 200 · 300 · 500 · 700 · 1000 · 2000 mg/L vitamin C	100	913 14		
³ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.						

Biotoxicity / Bioluminescence

See Toxicity (page 47)

www.mn-net.com (MN) 25

Bismuth (Bi3+)

Bismuth is present in lead and silver ores, and occasionally as the natural element. The metal is used in alloys of lead, tin, and cadmium, and in some pharmaceuticals.

Product	Platform	Measuring range	Number of tests	REF
■ Bismuth test paper	QT	$>$ 60 mg/L Bi^{3+}	200	907 33

Blood

The rapid detection of blood may be important in the investigation of evidence and crime scenes.

Product	Platform	Measuring range	Number of tests	REF
Peroxtesmo KM	QT	Traces of blood	25	906 05

BOD (biological oxygen demand)

Together with the chemical oxygen demand (COD) the biological oxygen demand (BOD) represents one of the most important sum parameters for the evaluation of waste water pollution. BOD is defined as the amount of oxygen per volume, which is used by the microorganisms for oxidative degradation of organic substances in a water sample. The BOD_5 value is usually determined over a period of 5 days at 20 °C

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® BOD ₅ -TT	П	0.5 –3000 mg/L O_2	22	985 825
■ NANOCOLOR® BOD ₅	П	2–3000 mg/L O ₂	25–50	985 822

Borate (boric acid, BO₃³-)

Borates are for example used in wood protection or as buffer substance (pH buffer). Perborates are used as bleaching agents in detergents.

Product	Platform	Measuring range	Number of tests	REF
■ Tumeric paper	QT	> 20 mg/L B	200	907 47

Bromide (Br⁻)

See Chloride (page 27)

Bromine (Br₂)

Bromine is used as an alternative to chlorine in disinfection. It does not produce the typical swimming pool odor, is more effective than chlorine and less corrosive at higher pH values. Overdosing may cause irritation of skin, eyes and mucous membranes.

Product	Platform	Measuring range	Number of tests	REF
Chlortesmo	QT	> 1 mg/L Cl ₂	200	906 03
■ VISOCOLOR® ECO Bromine 2)	CO	0.10–13.00 mg/L Br ₂	200	931 211
■ with NANOCOLOR® Chlorine Tests	Π	See Chlorine (page 28)		
2) Only photometrically evaluable, with photometers PF-3 and	d/or PF-12/PF-12 ^{Plus} .			

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Cadmium (Cd²⁺)

Cadmium is used in corrosion protection, in Ni-Cd batteries and as a color pigment. Due to its high toxicity, it is banned from use in solder in the EU since 2011.

Product	Platform	Measuring range	Number of tests	REF
■ <i>NANOCOLOR®</i> Cadmium 2	П	0.05–2.00 mg/L Cd ²⁺	10–19	985 014
■ <i>NANOCOLOR®</i> Cadmium	ST	0.002-0.50 mg/L Cd ²⁺	25	918 131

Calcium (Ca²⁺)

Along with magnesium, calcium is responsible for water hardness and can lead to deposits. It is therefore part of the analysis of boiler feed water. Calcium is also an important part of a diet because calcium deficiency can lead to osteoporosis.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Calcium	HT	0 · 10 · 25 · 50 · 100 mg/L Ca ²⁺	60	913 24
■ VISOCOLOR® ECO Calcium	TI	1 drop equals 5 mg/L Ca ²⁺	100	931 012
■ VISOCOLOR® HE Calcium CA 20	TI	0.1–3.6 mmol/L Ca ²⁺	200	915 010
■ <i>NANOCOLOR®</i> Hardness 20	ТТ	10–100 mg/L Ca ²⁺	20	985 043
■ NANOCOLOR® Hardness Ca/Mg	ТТ	10-100 mg/L Ca ²⁺	20	985 044

Carbonate hardness

See Hardness (page 34)

Carbonic acid (H₂CO₃)

See Acidity (page 22)

Cationic surfactants

See Surfactants (page 46)

Chloride (Cl⁻)

Chloride ions are present in all natural waters. The concentration depends on the geological and local situation. The chloride concentration can reach high levels in waste waters, polluted rivers, or in winter time when road salt is used. Very high levels of chloride can interfere with the determination of COD.

Platform	Measuring range	Number of tests	REF
HT	0 · 0.25 · 0.5 · 1 · 2 · 3 · 4 · 5 g/L NaCl	30	906 08
HT	0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	100	913 21
CO	1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L Cl ⁻	90	931 018
CO	5–500 mg/L Cl ⁻	300	915 004
ТТ	5–200 mg/L Cl ⁻	20	985 019
ТТ	0.5–50.0 mg/L Cl ⁻	20	985 021
ST	0.2–125 mg/L Cl ⁻	250	918 20
	HT HT CO CO TT TT	HT 0 · 0 · 25 · 0 · 5 · 1 · 2 · 3 · 4 · 5 g/L NaCl HT 0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻ CO 1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L Cl ⁻ CO 5 – 500 mg/L Cl ⁻ TT 5 – 200 mg/L Cl ⁻ TT 0 · 5 – 50 · 0 mg/L Cl ⁻	tests HT 0 · 0.25 · 0.5 · 1 · 2 · 3 · 4 · 5 g/L NaCl 30 HT 0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻ 100 CO 1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L Cl ⁻ 90 CO 5 – 500 mg/L Cl ⁻ 300 TT 5 – 200 mg/L Cl ⁻ 20 TT 0.5 – 50.0 mg/L Cl ⁻ 20

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Chlorine (Cl₂)

Chlorine is widely used for disinfection of swimming pools, water mains, and water reservoirs. Electroplaters use chlorine for the detoxification of cyanide-containing waste. Regular monitoring of chlorine level is essential as excessive chlorine not only impairs the smell and taste of water but also can be hazardous. One distinguishes between free chlorine and combined chlorine (chloroamines); the sum of both is called total chlorine.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	> 1 mg/L Cl ₂	Reel, 5 m length refill pack 100 200	907 54 907 55 907 56 907 58
Chlortesmo	QT	> 1 mg/L Cl ₂	200	906 03
Chlorine test	HT	10 · 50 · 100 · 200 mg/L Cl₂	Reel, 5 m length	907 09
Swimming pool test 3 in 1	HT	Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	907 52
Swimming pool test 5 in 1	HT	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	907 59
■ QUANTOFIX® Chlorine	HT	0 · 1 · 3 · 10 · 30 · 100 mg/L Cl₂	100	913 17
■ QUANTOFIX® Chlorine Sensitive 3)	HT	0 · 0 · 1 · 0 · 5 · 1 · 3 · 10 mg/L Cl ₂	100	913 39
■ VISOCOLOR® alpha Chlorine	CO	0.25 · 0.5 · 1.0 · 1.5 · 2.0 mg/L Cl ₂	150	935 019
■ VISOCOLOR® ECO Swimming pool	CO	Free chlorine: $< 0.1 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.9 \cdot 1.2 \cdot 2.0$ mg/L Cl_2 pH: $6.9 \cdot 7.2 \cdot 7.4 \cdot 7.6 \cdot 7.8 \cdot 8.2$	150	931 090
■ VISOCOLOR® ECO Chlorine 1, free + total 1)	CO	$<0.1\cdot0.1\cdot0.2\cdot0.3\cdot0.4\cdot0.6\cdot0.9\cdot1.2\cdot2.0~\text{mg/L}~\text{Cl}_2$	150	931 035
■ VISOCOLOR® ECO Chlorine 2, free + total 1)	CO	$<0.1 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.9 \cdot 1.2 \cdot 2.0 \; \text{mg/L Cl}_2$	150	931 015
■ VISOCOLOR® ECO free Chlorine 2 1)	CO	$<0.1\cdot0.1\cdot0.2\cdot0.3\cdot0.4\cdot0.6\cdot0.9\cdot1.2\cdot2.0~\text{mg/L}~\text{Cl}_2$	150	931 016
■ VISOCOLOR® ECO Chlorine 6, free and total ²⁾	CO	0.05–6.00 mg/L Cl ₂	200	931 217
■ VISOCOLOR® ECO free Chlorine 6 2)	CO	0.05-6.00 mg/L Cl ₂	400	931 219
■ VISOCOLOR® HE Chlorine, free + total	CO	0.0 · 0.02 · 0.04 · 0.06 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.60 mg/L Cl ₂	160	920 015
■ NANOCOLOR® Chlorine / Ozone 2	ТТ	0.05–2.00 mg/L Cl ₂	20	985 017
■ NANOCOLOR® Chlorine	ST	0.02-10.0 mg/L Cl ₂	250	918 16

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

Chlorine dioxide (CIO₂)

Chlorine dioxide is a powerful disinfectant which is used as an alternative to chlorine in drinking water and swimming pools. It is also used as a bleaching agent in paper industry and as a biocide in industrial cooling waters and in food industry. Chlorine dioxide is more oxidizing than chlorine.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Chlorine dioxide 1)	CO	$< 0.2 \cdot 0.2 \cdot 0.4 \cdot 0.6 \cdot 0.8 \cdot 1.1 \cdot 1.7 \cdot 2.3 \cdot 3.8 \; \mathrm{mg/L} \; \mathrm{ClO}_2$	150	931 021
■ NANOCOLOR® Chlorine dioxide 5	П	0.15 – 5.00 mg/L $\mathrm{ClO_2}$	20	985 018
■ NANOCOLOR® Chlorine dioxide	ST	0.04-4.00 mg/L ClO ₂	50	918 163

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

²⁾ Only photometrically evaluable, with photometers PF-3 and/or PF-12/PF-12^P

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.

Chlorite (CIO₂⁻)

See Chlorine dioxide (page 28)

Chromate / Chromium(VI) (CrO₄²⁻)

Chromates are for example used in the electroplating industry. They are toxic and carcinogenic and therefore need to be monitored carefully. Many companies are obliged to control the level of chromate in their effluents.

Product	Platform	Measuring range	Number of tests	REF
Chromium test paper	QT	> 2 mg/L Cr ³⁺ or $>$ 5 mg/L CrO ₄ ²⁻	200	907 24
■ QUANTOFIX® Chromate	HT	0 · 3 · 10 · 30 · 100 mg/L CrO ₄ ²⁻	100	913 01
■ VISOCOLOR® ECO Chromium(VI) 1)	CO	0.02 · 0.05 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L Cr(VI)	140	931 020
■ NANOCOLOR® total Chromium 2	П	0.005-2.00 mg/L Cr	20	985 059
■ NANOCOLOR® Chromate 5	П	0.01–4.0 mg/L CrO ₄ ²⁻	20	985 024
■ NANOCOLOR® Chromate	ST	0.01–6.0 mg/L CrO ₄ ²⁻	250	918 25

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

Cobalt (Co²⁺)

Cobalt is used in alloys and as a component of catalysts.

Product	Platform	Measuring range	Number of tests	REF
Cobalt test paper	QT	> 25 mg/L Co ²⁺	100	907 28
■ QUANTOFIX® Cobalt	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Co ²⁺	100	913 03
■ NANOCOLOR® Cobalt	ST	0.002–0.70 mg/L Co ²⁺	250	918 51

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

COD (chemical oxygen demand)

Besides the biological oxygen demand (BOD), the COD is the most important sum parameter for assessing the pollution of water. MACHEREY-NAGEL test tubes provide results that are comparable to the DIN 38409 H-41. Many also fulfill the requirements of DIN ISO 15705.

Product		Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® COD 60000		П	5000–60000 mg/L O ₂	20	985 012
■ NANOCOLOR® COD 15000		П	1000–15000 mg/L O ₂	20	985 028
■ NANOCOLOR® COD 10000		П	1000–10000 mg/L O ₂	20	985 023
■ NANOCOLOR® COD 4000		П	400-4000 mg/L O ₂	20	985 011
■ NANOCOLOR® COD 1500	ISO 15705	П	100-1500 mg/L O ₂	20	985 029
■ NANOCOLOR® COD 1500 Hg-free		П	100-1500 mg/L O ₂	20	963 029
■ NANOCOLOR® COD HR 1500	ISO 15705	П	20–1500 mg/L O ₂	20	985 038
■ NANOCOLOR® COD 600	ISO 15705	П	50–600 mg/L O ₂	20	985 030
■ NANOCOLOR® COD 300		П	50–300 mg/L O ₂	20	985 033
■ NANOCOLOR® COD 160	ISO 15705	П	15–160 mg/L O ₂	20	985 026
■ NANOCOLOR® COD 160 Hg-free		П	15–160 mg/L O ₂	20	963 026
■ NANOCOLOR® COD LR 150	ISO 15705	П	3–150 mg/L O ₂	20	985 036
■ NANOCOLOR® COD 60	ISO 15705	П	5–60 mg/L O ₂	20	985 022
■ NANOCOLOR® COD 40	ISO 15705	П	2–40 mg/L O ₂	20	985 027

Coloring / Color

Natural waters are usually brown to yellow. The Hazen scale, which is calibrated with platinum cobalt chloride standards, is a reference for the color strength. Color measurements are special methods available in certain photometers and do not require additional reagents. Please see photometer manuals for details.

Product	Platform	Measuring range	Number of tests	REF
Color (Hazen / DIN)	ST	5-500 mg/L Pt (Hazen)	=	_

Complexing agents

See EDTA (page 32)

Cooking salt (NaCl)

See Chloride (page 27)

Cooling lubricants

Cooling lubricants or coolants are used when metal parts are machined (drilling, cutting, etc.). Different parameters, e.g. pH and lubricant concentration, are checked to ensure the optimal function.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® LubriCheck	HT	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	100	913 36
■ QUANTOFIX [®] Nitrite/pH	HT	Nitrite: $0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 40 \cdot 80 \text{ mg/L NO}_2^-$ pH: $6.0 \cdot 6.4 \cdot 6.7 \cdot 7.0 \cdot 7.3 \cdot 7.6 \cdot 7.9 \cdot 8.2 \cdot 8.4 \cdot 8.6 \cdot 8.8 \cdot 9.0 \cdot 9.3 \cdot 9.6$	100	913 38

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Copper (Cu²⁺)

Copper is one of the most widely used metals in the industry for example on surfaces and as a component of alloys. In addition, it is also used in pesticides.

Product	Platform	Measuring range	Number of tests	REF
Copper test paper	QT	$> 20 \text{ mg/L Cu}^{2+}$	200	907 29
■ Cuprotesmo	QT	> 5 mg/L Cu ^{+/2+} or > 0.05 µg Cu	40	906 01
■ QUANTOFIX® Copper	HT	0 · 10 · 30 · 100 · 300 mg/L Cu ²⁺	100	913 04
■ VISOCOLOR® ECO Copper 1)	CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 1.0 · 1.5 mg/L Cu ²⁺	100	931 037
■ VISOCOLOR® HE Copper	CO	0.0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Cu ²⁺	150	920 050
■ NANOCOLOR® Copper 5	Π	0.10–7.00 mg/L Cu ²⁺	20	985 053
■ NANOCOLOR® Copper	ST	0.01–10.0 mg/L Cu ²⁺	250	918 53

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12Flus. Measuring range can differ in photometrical evaluation.

Cyanide (CN⁻)

Cyanide is extremely toxic. The lethal dose is about 1 mg/kg body weight. A careful control is therefore essential, whenever cyanides are used for industrial processes, e.g. in electroplating or in the extraction of gold. Intense control is also required in the production of fruit brandy from stone fruit.

Product	Platform	Measuring range	Number of tests	REF
■ Cyantesmo	QT	> 0.2 mg/L CN ⁻ or HCN	Reel, 5 m length	906 04
■ QUANTOFIX® Cyanide	HT	0 · 1 · 3 · 10 · 30 mg/L CN⁻	100	913 18
■ VISOCOLOR® ECO Cyanide 1)	CO	0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L CN⁻	100	931 022
■ VISOCOLOR® HE Cyanide	CO	0.0 · 0.002 · 0.004 · 0.007 · 0.010 · 0.015 · 0.020 · 0.025 · 0.030 · 0.040 mg/L CN⁻	50	920 028
■ NANOCOLOR® Cyanide 08	TT	0.005–0.80 mg/L CN ⁻	20	985 031
■ NANOCOLOR® Cyanide	ST	0.001–0.50 mg/L CN ⁻	250	918 30

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

Cyanuric acid

Cyanuric acid is a common stabilizer for chlorine in swimming pools which is degraded by intensive UV radiation, if it is not stabilized. Therefore, cyanuric acid ensures the water's safe and proper disinfection.

Platform	Measuring range	Number of tests	REF
HT	0 · 50 · 100 · 150 · 300 mg/L Cya	25	907 10
CO	10 · 15 · 20 · 30 · 40 · 60 · 80 · 100 mg/L Cya	100	931 023
	HT	HT 0 · 50 · 100 · 150 · 300 mg/L Cya	HT 0 · 50 · 100 · 150 · 300 mg/L Cya 25

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and / or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

DEHA (diethylhydroxylamine)

N,N-diethylhydroxylamine (DEHA) is used as an oxygen scavenger in boiler feed water that effectively prevents corrosion.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO DEHA	CO	0 · 0.01 · 0.03 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 mg/L DEHA	125	931 024
■ NANOCOLOR® DEHA 1	П	0.05-1.00 mg/L DEHA	20	985 035

Detergents

See Surfactants (detergents) (page 46)

Disinfectants

With QUATs as active substance: see Quaternary ammonium complexes (page 43)

With peracetic acid as the active substance: see Peracetic acid (page 41)

With peroxide as the active substance: see Peroxide (page 41)

With glutaraldehyde as the active substance: see Glutaraldehyde (page 33)

With chlorine as the active substance: see Chlorine (page 28)

With chlorine dioxide as the active substance: see Chlorine dioxide (page 28)

With ozone as the active substance: see Ozone (page 40)

Dithionite (S₂O₄²⁻)

The detection of dithionite is important to determine the end point of the conversion of vat dyes to the leuco form in textile industry.

Product	Platform	Measuring range	Number of tests	REF
■ Nitrazine yellow paper	QT	Traces of sodium dithionite	200	907 51
■ VISOCOLOR® HE Sulfite SU 100	TI	2-100 mg/L SO ₃ ²⁻	100	915 008

EDTA (ethylendiaminetetraacetic acid)

EDTA and other chelating agents are often used as additives in detergents and cleaning agents, cosmetics and in the food industry. They are poorly biodegradable and can interfere with the photometric determination of metal ions. Other chelating agents are also detected (for details see instruction leaflet).

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® EDTA	HT	0 · 100 · 200 · 300 · 400 mg/L EDTA	100	913 35
■ <i>NANOCOLOR</i> ® org. Complexing agents 10	П	0.5–10.0 mg/L $I_{\rm BIC}$ /0.7–14 mg/L EDTA	10–19	985 052

Ethanol (C₂H₅OH)

Ethanol is the least toxic alcohol to humans and is present in beer, wine, liquor and other alcoholic beverages. It can also be used as a disinfectant and for preservation.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Ethanol 1000	П	100-1000 mg/L EtOH/0.013-0.130 Vol. % EtOH	23	985 838

Fatty acids

See Organic acids (page 40)

Fluoride (F⁻)

Fluoride is naturally present in water but is sometimes also added to drinking water as a health care measure. The determination of fluoride can be used for the rapid detection of hydrofluoric acid (HF), which is used in large quantities in semiconductor industry.

Product	Platform	Measuring range	Number of tests	REF
Fluoride test paper	QT	$>$ 20 mg/L F $^{-}$	200	907 50
■ Fluoride test	HT	0 · 2 · 5 · 10 · 20 · 50 · 100 mg/L F	30	907 34
■ VISOCOLOR® ECO Fluoride 2)	CO	0.1–2.0 mg/L F ⁻	150	931 227
■ <i>NANOCOLOR®</i> Fluoride 2	TT	0.1–2.0 mg/L F ⁻	20	985 040
■ NANOCOLOR® Fluoride	ST	0.05–2.00 mg/L F ⁻	500	918 142
2) Only photometrically avaluable, with photometers DE 6	2 1 / DE 10 / DE 10 PMS			

Only photometrically evaluable, with photometers PF-3 and / or PF-12/PF-12 Only photometrically evaluable, with photometers PF-3 and / or PF-12/PF-12 Only photometrically evaluable, with photometers PF-3 and / or PF-12/PF-12 Only PF-12 Only photometers PF-3 and / or PF-12/PF-12 Only PF-12 On

Formaldehyde (HCHO)

Formaldehyde is used in large quantities as a raw material in chemical industry and as a biocide in closed cooling or heating circuits. Additionally, it is used for the production of wood-based panels (chipboards), and for textile treatment. Formaldehyde can cause allergies and irritation of skin, eyes and the respiratory tract.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Formaldehyde 3)	HT	0 · 10 · 20 · 40 · 60 · 100 · 200 mg/L HCHO	100	913 28
■ <i>NANOCOLOR®</i> Formaldehyde 10	П	0.02-10.00 mg/L HCHO	20	985 046
■ NANOCOLOR® Formaldehyde 8	П	0.1-8.0 mg/L HCHO	20	985 041

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Glucose

Glucose is an important ingredient in many foods. Similar to total sugar (see page 47) it is a quality criterion for potatoe processing and in beverage industry.

		Measuring range	Number of tests	REF
■ QUANTOFIX® Glucose ³⁾	łT	0 · 50 · 100 · 250 · 500 · 1000 · 2000 mg/L glucose	100	913 48

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Glutaraldehyde

Glutaraldehyde is a strong disinfectant that is used e.g. for the disinfection of surgical instruments. The concentration must be sufficiently high to ensure that instruments are free of contaminants.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Glutaraldehyde	HT	$0 \cdot 0.5 \cdot 1 \cdot 1.5 \cdot 2 \cdot 2.5 \%$ glutaraldehyde	100	913 43

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Hardness

Water hardness is primarily caused by calcium and magnesium. It forms deposits in pipes and on heating elements and can lead to damages. Testing water hardness is important to dose water softeners correctly. Very low residual hardness is required in industrial boiler feed water.

Water is often classified as "soft" or "hard". The following ranges apply in European households:

 $< 150 \text{ ppm } (10.5 ^{\circ}\text{e}) = \text{soft water}$

150–250 ppm (10.5 to 17.5 $^{\circ}$ e) = moderately hard water

> 250 ppm (17 °e) = hard water

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Carbonate hardness	HT	0·3.75·7.5·12.5·18.75·25 °e	100	913 23
■ QUANTOFIX [®] Multistick for aquarium owners	HT	Total hardness: 0 · 6.25 · 12.5 · 18.75 · 25 · 31.25 °e Carbonate hardness: 0 · 3.75 · 7.5 · 12.5 · 18.75 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	100	913 26
■ QUANTOFIX® Multistick for aquarium owners	HT	Total hardness: 0 · 6.25 · 12.5 · 18.75 · 25 · 31.25 °e Carbonate hardness: 0 · 3.75 · 7.5 · 12.5 · 18.75 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	25	913 27
Swimming pool test 5 in 1	HT	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO_3 Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO_3 pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	907 59
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	100	912 01
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	1000	912 23
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	5000	912 21
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	50 x 3 pieces	912 902
■ AQUADUR®	HT	$<54 \cdot > 72 \cdot > 126 \cdot > 252 \cdot > 378 \text{ ppm CaCO}_3$	100	912 20
■ AQUADUR®	HT	$<54 \cdot > 72 \cdot > 126 \cdot > 252 \cdot > 378 \text{ ppm CaCO}_3$	1000	912 24
■ AQUADUR [®]	HT	$<54\cdot>72\cdot>126\cdot>252\cdot>378~{\rm ppm~CaCO_3}$	5000	912 22
■ AQUADUR®	HT	$< 54 \cdot > 72 \cdot > 151.2 \cdot > 252 \text{ ppm CaCO}_3$	100	912 39
■ AQUADUR [®]	HT	$<54\cdot>72\cdot>151.2\cdot>252\cdot>378~{\rm ppm~CaCO_3}$	1000	912 40
■ AQUADUR® Sensitive	HT	$0 \cdot 5.4 \cdot 10.8 \cdot 18.8 \text{ ppm CaCO}_3$	100	912 10
■ VISOCOLOR® alpha Carbonate hardness	TI	1 drop equals 1.25 °e	100	935 016
■ VISOCOLOR® alpha Total hardness	TI	1 drop equals 1.25 °e	100	935 042
■ VISOCOLOR® alpha Residual hardness	CO	0.00 · 0.05 · 0.10 · 0.19 · 0.38 °e	200	935 080
■ VISOCOLOR® ECO Carbonate hardness	TI	1 drop equals 1.25 °e	100	931 014
■ VISOCOLOR® ECO Total hardness	TI	1 drop equals 1.25 °e	110	931 029
■ VISOCOLOR® HE Carbonate hardness C 20	TI	0.6–25 °e	200	915 003
■ VISOCOLOR® HE Total hardness H 20 F	TI	0.6–25.0 °e	200	915 005
■ VISOCOLOR® HE Total hardness H 2	TI	0.06-2.50 °e	200	915 002
■ NANOCOLOR® Carbonate hardness 15	TT	1.25–18.75 °e	20	985 015
■ NANOCOLOR® Hardness 20	П	1.25–25.00 °e	20	985 043
■ NANOCOLOR® Hardness Ca/Mg	П	1.25–25.0 °e	20	985 044
■ NANOCOLOR® Residual hardness 1	Π	0.03–1.25 °e	20	985 084

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Hydrazine (N_2H_4)

Hydrazine is a powerful oxygen scavenger for boiler feed water and is used to prevent corrosion. Since it is toxic and carcinogenic, the use must be carefully controlled. In many areas, it was replaced by the less dangerous DEHA.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Hydrazine 1)	CO	$0 \cdot 0.05 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.25 \cdot 0.30 \cdot 0.40 \text{ mg/L N}_2\text{H}_4$	130	931 030
■ NANOCOLOR® Hydrazine	ST	0.002–1.50 mg/L N ₂ H ₄	250	918 44
1) Also suitable for photometrical evaluation on photometers	s PF-3 and/or PF-12/PF	-12 ^{Plus} . Measuring range can differ in photometrical evaluation.		

Hydrocarbons

Even low concentrations of hydrocarbons such as gasoline, diesel or oil can contaminate water and soil.

Product	Platform	Measuring range	Number of tests	REF
Oil test paper	QT	> 250 mg/L petroleum ether or > 10 mg/L gasoline > 5 mg/L fuel oil or > 1 mg/L lubricating oil	100	907 60
■ NANOCOLOR® HC 300	П	0.5–5.6 mg/L HC	20	985 057

Hydrogen cyanide (HCN)

See Cyanide (page 31)

Hydrogen peroxide (H₂O₂)

See Peroxide (page 41)

Iodine (I⁻)

See Chlorine (page 28)

Iron (Fe^{2+/3+})

Iron is used in the industry for example for piping and containers. The determination of iron is a key indicator for the level of corrosion.

Iron is not desired in drinking water as it leads to a brown color and a foul smell.

Product	Platform	Measuring range	Number of tests	REF
■ Dipyridyl paper (specific for Fe ²⁺)	QT	$> 2 \text{ mg/L Fe}^{2+}$	200	907 25
Iron test paper	QT	> 10 mg/L Fe ^{2+/3+}	100	907 26
QUANTOFIX® Total iron 1000	HT	0 · 5 · 20 · 50 · 100 · 250 · 500 · 1000 mg/L Fe ^{2+/3+}	100	913 30
QUANTOFIX® Total iron 100	HT	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Fe ^{2+/3+}		913 44
■ VISOCOLOR® ECO Iron 1 1)	CO	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	200	931 025
■ VISOCOLOR® ECO Iron 2 1)	CO	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	100	931 026
■ VISOCOLOR® HE Iron	CO	0.0 · 0.01 · 0.02 · 0.03 · 0.04 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L Fe	300	920 040
■ NANOCOLOR® Iron 3	Π	0.02–3.00 mg/L Fe	20	985 037
■ NANOCOLOR® Iron	ST	0.01–15.0 mg/L Fe	250	918 36

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests

Lactoperoxidase

See Peroxidase (page 41)

Lead (Pb²⁺)

Lead in a water supply may have different sources, e.g. industrial, mine, and smelter discharges or dissolution of plumbing and plumbing fixtures. Lead also is used in service pipes, thus tap water may also contain lead. Lead is toxic if ingested and is a cumulative poison.

Product	Platform	Measuring range	Number of tests	REF
■ Plumbtesmo	QT	> 5 mg/L Pb ²⁺	40	906 02
■ NANOCOLOR® Lead 5	П	0.10–5.00 mg/L Pb ²⁺	20	985 009
■ <i>NANOCOLOR®</i> Lead	ST	0.005-1.00 mg/L Pb ²⁺	50	918 101

Luminous bacteria test

See Toxicity (page 47)

Magnesium (Mg²⁺)

Magnesium and calcium are responsible for the hardness of water and can lead to lime deposits. Magnesium is also an important parameter in the food industry, since it is essential for a number of physiological processes.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Total hardness and VISOCOLOR® ECO Calcium	TI TI	1 drop equals 1.25 °e 1 drop equals 0.875 °e	110 100	931 029 931 012
■ <i>NANOCOLOR®</i> Hardness 20	П	1.25–25.0 °e	20	985 043
■ <i>NANOCOLOR®</i> Hardness Ca/Mg	П	1.25–25.0 °e / 5–50 mg/L Mg ²⁺	20	985 044

Manganese (Mn)

Manganese is widely used in steel alloys together with iron, aluminum and other metals. It is also an essential trace element, since it is part of several enzymes. Manganese can negatively influence the quality of food.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Manganese 1)	CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Mn	70	931 038
■ VISOCOLOR® HE Manganese	CO	0.0 · 0.03 · 0.06 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Mn	100	920 055
■ NANOCOLOR® Manganese 10	ТТ	0.1–10.0 mg/L Mn	20	985 058
■ NANOCOLOR® Manganese	ST	0.01–10.0 mg/L Mn	250	918 60

 $^{^{1)}}$ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12 $^{\text{Plus}}$. Measuring range can differ in photometrical evaluation.

Mastitis

Mastitis (inflammation) of a cow's udder must be detected promptly, because the milk of infected animals may not be placed on the market. It can be recognized by a check of the milk's pH value, e.g. with the udder test paper.

Product	Platform	Measuring range	Number of tests	REF
Udder test paper	QT	Traces of Mastitis	20	907 48

Methanol (CH₃OH)

In wastewater treatment plants, methanol can be used as a carbon source in the denitrification process. It is naturally present in different fruit juices. Because of its toxicity, this alcohol may also be carefully controlled during juice production.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Methanol 15	TT	0.2-15.0 mg/L MeOH	23	985 859

Milk

Alkaline phosphatase (control of pasteurization) see Phosphatase (page 42) Lactoperoxidase (control of ultra high temperature milk) see Peroxidase (page 41)

Molybdenum (Mo⁶⁺)

Molybdenum salts are used as corrosion inhibitors, mainly in coolant water and boiler feed water. The careful control of molybdenum is necessary to ensure a sufficient corrosion prevention.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Molybdenum	HT	0 · 5 · 20 · 50 · 100 · 250 mg/L Mo ⁶⁺	100	913 25
■ NANOCOLOR® Molybdenum 40	TT	1.0-40.0 mg/L Mo(VI)	20	985 056

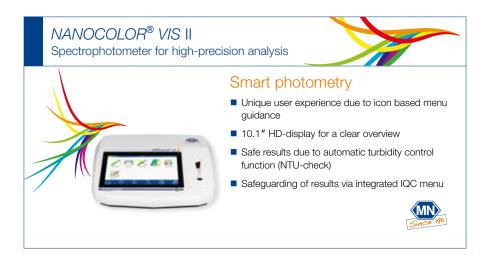
Nickel (Ni²⁺)

Nickel can cause allergic reactions on the skin. Metal objects that can have skin contact, are therefore regularly tested for their nickel content.

Nickel is also used for metal plating processes. Here, the nickel content is controlled in the baths as well as in the outflow.

	Measuring range	Number of tests	REF
QT	> 10 mg/L Ni ²⁺	200	907 30
HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Ni ²⁺	100	913 05
CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Ni ²⁺	150	931 040
П	0.10-7.00 mg/L Ni ²⁺	20	985 071
ST	0.01–10.0 mg/L Ni ²⁺	250	918 62
	HT CO TT ST	HT 0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Ni ²⁺ CO 0 · 0 · 1 · 0 · 2 · 0 · 3 · 0 · 5 · 0 · 7 · 0 · 9 · 1 · 2 · 1 · 5 mg/L Ni ²⁺ TT 0 · 10 – 7 · 00 mg/L Ni ²⁺	HT 0.10.25.50.100.250.500.1000 mg/L Ni ²⁺ 100 CO 0.01.0.2.0.3.0.5.0.7.0.9.1.2.1.5 mg/L Ni ²⁺ 150 TT 0.10-7.00 mg/L Ni ²⁺ 20 ST 0.01-10.0 mg/L Ni ²⁺ 250

Parameters A–Z


Nitrate (NO₃⁻)

Nitrate is a by-product of biological decay from plant and animal matter (nitrification). Nitrate is reduced to nitrite easily, which can lead to diseases and increased fish mortality. Furthermore, high concentrations of nitrate itself are also harmful. Such concentrations are found predominantly in agricultural areas where nitrogen fertilizer is regularly used. The EU's limit for nitrate in drinking water is 50 mg/L. Nitrate is also an important parameter in the outflow of wastewater treatment plants.

Product	Platform	Measuring range	Number of tests	REF
Nitratesmo	QT	> 10 mg/L NO $_3^-$ or > 5 mg/L NO $_2^-$	Reel, 5 m length	906 11
QUANTOFIX® Nitrate 100 3)	HT	0 · 5 · 10 · 25 · 50 · 75 · 100 mg/L NO ₃ -	100	913 51
QUANTOFIX® Nitrate / Nitrite 3)	HT	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	100	913 13
■ VISOCOLOR® alpha Nitrate	CO	2 · 8 · 15 · 30 · 50 mg/L NO ₃ -	100	935 065
■ VISOCOLOR® ECO Nitrate 1)	CO	$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{ mg/L NO}_3^-$	110	931 041
■ NANOCOLOR® Nitrate 250	π	4–60 mg/L NO ₃ –N	20	985 066
■ NANOCOLOR® Nitrate 50	Π	0.3–22.0 mg/L NO ₃ –N	20	985 064
■ NANOCOLOR® Nitrate 8	П	0.30-8.00 mg/L NO ₃ -N	20	985 065
■ NANOCOLOR® Nitrate	ST	0.1–30.0 mg/L NO ₃ –N	100	918 65
■ NANOCOLOR® Nitrate Z	ST	0.02-1.0 mg/L NO ₃ -N	500	918 63

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Pkus}. Measuring range can differ in photometrical evaluation.
³⁾ Also suitable for evaluation on QUANTOFIX[®] Relax. Measuring range on the QUANTOFIX[®] Relax can differ from visual range.

Nitrite (NO₂-)

Nitrite is produced as an intermediate in the nitrification in sewage treatment plants. An excessive content of nitrite indicates that the plant's biology does not work optimally. A high level of nitrite in cooling lubricants indicates a microbiological contamination of the circuit (see also cooling lubricants page 30). Nitrite has to be controlled in aquariums as well in order to ensure optimum living conditions for the aquatic life.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	> 1 mg/L NO ₂ ⁻	Reel, 5 m length Refill pack 100 200	907 54 907 55 907 56 907 58
■ Nitratesmo	QT	$> 10 \text{ mg/L NO}_3^- \text{ or } > 5 \text{ mg/L NO}_2^-$	Reel, 5 m length	906 11
QUANTOFIX® Nitrite 3000	HT	0 · 0.1 · 0.3 · 0.6 · 1 · 2 · 3 g/L NO ₂ -	100	913 22
QUANTOFIX® Nitrite 3)	HT	0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ -	100	913 11
QUANTOFIX® Nitrate / Nitrite 3)	HT	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	100	913 13
■ QUANTOFIX® Nitrite / pH	HT	Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻ pH: 6.0 · 6.4 · 6.7 · 7.0 · 7.3 · 7.6 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.0 · 9.3 · 9.6	100	913 38
■ VISOCOLOR® alpha Nitrite	CO	0.05 · 0.10 · 0.25 · 0.5 · 1.0 mg/L NO ₂ ⁻	200	935 066
■ VISOCOLOR® ECO Nitrite 1)	CO	0 · 0.02 · 0.03 · 0.05 · 0.07 · 0.1 · 0.2 · 0.3 · 0.5 mg/L NO ₂ ⁻	120	931 044
■ VISOCOLOR® HE Nitrite	CO	0.0 · 0.005 · 0.010 · 0.015 · 0.02 · 0.03 · 0.04 · 0.06 · 0.08 · 0.10 mg/L NO ₂ ⁻	150	920 063
■ NANOCOLOR® Nitrite 4	П	0.1–4.0 mg/L NO ₂ -N	20	985 069
■ NANOCOLOR® Nitrite 2	Π	0.003-0.460 mg/L NO ₂ -N	20	985 068
NANOCOLOR® Nitrite	ST	0.002-0.30 mg/L NO ₂ -N	250	918 67

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.

Nitrification inhibition

The nitrification is an important part in the process of nitrogen elimination in sewage treatment plants. A number of different substances in the sewage plant inflow may interfere this process.

Product	Platform	Measuring range	Number of tests	REF
■ BioFix® <i>A-Tox</i>	MB	0-100% inhibition of the oxidation of ammonium	25	970 001
■ BioFix [®] <i>N-Tox</i>	MB	0-100 % inhibition of the oxidation of nitrite	25	970 002

Nitrogen (total, N)

Total nitrogen is the sum of all nitrogen-containing compounds in a water sample. It is an important parameter in the outflow control of water treatment plants.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® total Nitrogen TN _b 220	П	5–220 mg/L N	20	985 088
■ NANOCOLOR® total Nitrogen TN _b 60	П	3–60 mg/L N	20	985 092
■ NANOCOLOR® total Nitrogen TN _b 22	TT	0.5-22.0 mg/L N	20	985 083

Parameters A-Z

Non-ionic detergents

See Surfactants (detergents) (page 46)

Oil

See Hydrocarbons (page 35)

Organic acids

Fatty acids and acetic acid are examples of organic acids in the field of water analysis. Acetic acid (table vinegar) has a germicidal effect, which is utilized for the preservation of food.

Oxygen (O₂)

Oxygen in water is an important parameter for aquatic life, but also in the prevention of corrosion, e.g. in boiler feed water.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Active oxygen	HT	0 · 4 · 8 · 15 · 25 mg/L KMPS	100	913 49
■ VISOCOLOR® ECO Oxygen 1)	CO	$0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \text{ mg/L O}_2$	50	931 088
■ VISOCOLOR® HE Oxygen SA 10	TI	0.2–10.0 mg/L O ₂	100	915 009
■ NANOCOLOR® Oxygen 12	Π	0.5–12.0 mg/L O ₂	22	985 082
		_		

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

Ozone (O₃)

Ozone, a potent disinfectant, is widely used for the sterilization and purification of water in swimming baths, breweries, pharmaceutical industries, and mineral water factories. The gas is toxic to humans and is also produced in the environment from oxygen and nitrogen oxide under the influence of sunlight. When ozone concentrations in air are higher than $180 \, \mu g/m^3$ sensitive persons should avoid physical exertion outdoors.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	Qualitative	Reel, 5 m length refill pack 100 200	907 54 907 55 907 56 907 58
Ozone test (measurement in air)	HT	$<90\cdot90150\cdot150210\cdot>210~\mu\text{g/m}^3~\text{O}_3$ (ozone content in air)	12	907 36
■ NANOCOLOR® Chlorine / Ozone 2	П	0.05–2.00 mg/L O ₃	20	985 017
■ NANOCOLOR® Ozone	ST	0.01–1.50 mg/L O ₃	200	918 85

Peracetic acid (CH₃COOOH)

Peracetic acid is a widely used, very strong disinfectant which is applied both for piping and tanks in the food industry and for bleaching in the pulp and paper industry. Disinfectant baths in the medical sector must be checked regularly, as peracetic acid can decompose in the presence of traces of blood.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Peracetic acid 2000 ³⁾	HT	0 · 500 · 1000 · 1500 · 2000 mg/L peracetic acid	100	913 42
■ QUANTOFIX® Peracetic acid 500 3)	HT	$0 \cdot 50 \cdot 100 \cdot 200 \cdot 300 \cdot 400 \cdot 500$ mg/L peracetic acid	100	913 41
■ QUANTOFIX® Peracetic acid 50 3)	HT	0 · 5 · 10 · 20 · 30 · 50 mg/L peracetic acid	100	913 40
3) Also suitable for evaluation on QUANTOFIX® Relax. Measurin	a range on the QUAN	NTOFIX® Relax can differ from visual range.		

Peroxidase

The enzyme peroxidase is an important parameter in food industry to control the quality of canned food. Lactoperoxidase is an indicator of the integrity of high-temperature heating in dairy industry.

Product	Platform	Measuring range	Number of tests	REF
Peroxtesmo KM (for criminalistics)	QT	Traces of blood	25	906 05
Peroxtesmo KO (for food industry)	QT	Traces of peroxidase	100	906 06
Peroxtesmo MI (for dairy industry)	QT	> 3 % raw milk in UHT milk	100	906 27

Peroxide (H_2O_2)

Hydrogen peroxide is a disinfectant. It is used in the dairy and beverage industry for disinfection of packaging. Prior to the disinfection, the check for a sufficiently high concentration of peroxide is mandatory. After the disinfection, the complete removal of peroxides has to be controlled.

Some solvents, which are used in the chemical industry, tend to form peroxides. The check for peroxides in such solvents is of importance to avoid explosions during heating.

Product	Platform	Measuring range	Number of tests	REF
QUANTOFIX® Peroxide 10003)	HT	$0\cdot50\cdot150\cdot300\cdot500\cdot800\cdot1000~\text{mg/L}~\text{H}_2\text{O}_2$	100	913 33
■ QUANTOFIX® Peroxide 100 ³⁾	HT	0 · 1 · 3 · 10 · 30 · 100 mg/L H ₂ O ₂	100	913 12
QUANTOFIX® Peroxide 25 ³⁾	HT	$0 \cdot 0.5 \cdot 2 \cdot 5 \cdot 10 \cdot 25 \text{ mg/L H}_2\text{O}_2$	100	913 19
■ NANOCOLOR® Peroxide 2	π	0.03–2.00 mg/L H ₂ O ₂	10–19	985 871
3) Also suitable for evaluation on QUANTOFIX® Relax. Mea	suring range on the QUAN	TOFIX® Relax can differ from visual range.		

Phenol

Phenols are found in domestic and industrial waste water. They are used i.a. for the production of pharmaceuticals and pesticides.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Phenolic index 5	П	0.2–5.0 mg/L phenol	20	985 074
■ NANOCOLOR® Phenol	ST	0.01–7.0 mg/L phenol	500	918 75

Parameters A-Z

Phosphatase

The determination of alkaline phosphatase in milk allows a quick and easy quality control of pasteurization (Phosphatesmo MI).

The test for acid phosphatase (Phosphatesmo KM) enables a quick and simple check for sperm in stains. However, this test does not replace the detection of intact sperm.

Product	Platform	Measuring range	Number of tests	REF
Phosphatesmo KM (for criminalistics)	QT	Traces of sperm	25	906 07
Phosphatesmo MI (for dairy industry)	QT	> 0.5 % raw milk in pasteurized milk or > 300 U/L alkaline phosphatase in UHT milk	50	906 12

Phosphate (phosphorous, PO₄3-)

High levels of phosphate in surface water are an indication of domestic sewage, fertilizer or industrial wastewater. Very high levels lead to eutrophication (over-fertilization) of rivers and lakes and can ultimately lead to the death of fish and plants. The elimination of phosphorus from wastewater is therefore an important target of cleaning in sewage treatment plants.

Platform	Measuring range	Number of tests	REF
HT	$0\cdot3\cdot10\cdot25\cdot50\cdot100$ mg/L PO $_4$ $^{3-}$	100	913 20
CO	2 · 5 · 10 · 15 · 20 mg/L PO ₄ ³⁻	70	935 079
CO	$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \text{ mg/L PO}_{4}\text{-P}$	80	931 084
CO	0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L P	300	920 082
CO	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 mg/L P	100	920 080
П	10.0-50.0 mg/L P	19	985 079
П	5.0–50.0 mg/L P	20	985 055
П	0.30-15.00 mg/L P	20	985 080
П	0.20-5.00 mg/L P	20	985 081
П	0.05-1.50 mg/L P	20	985 076
П	0.05-0.50 mg/L P	20	985 095
ST	0.2–17 mg/L PO ₄ -P	500	918 78
ST	0.04-6.5 mg/L PO ₄ -P	500	918 77
	HT CO CO CO TT TT TT TT TT ST	HT 0.3.10.25.50.100 mg/L PO ₄ 3- CO 2.5.10.15.20 mg/L PO ₄ 3- CO 0.0.2.0.3.0.5.0.7.1.2.3.5 mg/L PO ₄ -P CO 0.0.0.05.0.10.0.15.0.20.0.3.0.4.0.6.0.8.1.0 mg/L P CO 0.0.0.01.0.02.0.03.0.05.0.07.0.10.0.15.0.20.0.25 mg/L P TT 10.0-50.0 mg/L P TT 5.0-50.0 mg/L P TT 0.30-15.00 mg/L P TT 0.20-5.00 mg/L P TT 0.05-1.50 mg/L P TT 0.05-0.50 mg/L P	tests HT 0⋅3⋅10⋅25⋅50⋅100 mg/L PO₄³² 100 CO 2⋅5⋅10⋅15⋅20 mg/L PO₄³² 70 CO 0⋅0.2⋅0.3⋅0.5⋅0.7⋅1⋅2⋅3⋅5 mg/L PO₄-P 80 CO 0⋅0.05⋅0.10⋅0.15⋅0.20⋅0.3⋅0.4⋅0.6⋅0.8⋅1.0 mg/L P 300 CO 0.0⋅0.01⋅0.02⋅0.03⋅0.05⋅0.07⋅0.10⋅0.15⋅0.20⋅0.25 mg/L P 100 TT 10.0-50.0 mg/L P 19 TT 5.0-50.0 mg/L P 20 TT 0.30-15.00 mg/L P 20 TT 0.05-5.00 mg/L P 20 TT 0.05-1.50 mg/L P 20 TT 0.05-0.50 mg/L P 20 ST 0.2-17 mg/L PO₄-P 500

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12Plus. Measuring range can differ in photometrical evaluation.

pH value

The pH is a measure of the acidity or alkalinity of an aqueous solution. It is defined as the negative decadic logarithm of the hydrogen ion concentration.

Product	Platform	Measuring range	Number of tests	REF
pH test papers see corresponding chapter (from page 52)	рН			
■ VISOCOLOR® alpha pH 5–9	CO	pH: 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	200	935 075
■ VISOCOLOR® ECO pH 4.0-9.0	CO	pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	450	931 066
■ VISOCOLOR® ECO pH 6.0-8.2	CO	pH: 6.1-8.4	150	931 270
■ VISOCOLOR® HE pH 4.0–10.0	CO	pH: 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	500	920 074
■ NANOCOLOR® pH 6.5–8.2	Π	pH: 6.5–8.2	100	918 72

³ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.

POC (polyoxycarboxylic acids)

POCs are used in boiler feed water to prevent lime deposits.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® POC 200	TT	20-200 mg/L POC AS 2020/20-200 mg/L POC HS 2020/ 20-200 mg/L Polystabil® DK/2-40 mg/L Polystabil® KWI	20	985 070

Potassium (K⁺)

Potassium is an essential element for nutrition. Water-soluble potassium compounds are used as fertilizers and therefore have a great importance in agriculture.

Product	Platform	Measuring range	Number of tests	REF
Potassium test paper	QT	> 250 mg/L K ⁺	200	907 27
■ QUANTOFIX® Potassium	HT	0 · 200 · 400 · 700 · 1000 · 1500 mg/L K ⁺	100	913 16
■ VISOCOLOR® ECO Potassium 1)	CO	2 · 3 · 4 · 6 · 8 · 10 · 15 mg/L K ⁺	60	931 032
NANOCOLOR® Potassium 50	П	2–50 mg/L K ⁺	20	985 045

Proteins

Proteins are easily detected on surfaces and can be used as an indication of incomplete cleaning in food processing companies.

Product	Platform	Measuring range	Number of tests	REF
■ INDIPRO	QT	> 50 µg BSA (bovine serum albumin)	60	907 65

Quaternary ammonium compounds (QUATs)

Quaternary ammonium compounds are widely used for disinfection of medical devices and surfaces. In addition, they are also used as biocides in cooling circuits.

Product	Platform	Measuring range	Number of tests	REF
■ INDIQUAT	HT	on request		909 000
QUANTOFIX® QUAT	HT	$0\cdot 10\cdot 25\cdot 50\cdot 100\cdot 250\cdot 500\cdot 1000 \text{ mg/L benzalkonium chloride}$	100	913 37

Parameters A-Z

Residual hardness

See hardness (page 34)

Silica / Silicon (Si)

Depending on the geology, silica can be present in fresh water. In heating systems it can form dangerous silicate deposits which can lead to severe damages.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Silica 1)	CO	$0 \cdot 0.2 \cdot 0.4 \cdot 0.6 \cdot 1.0 \cdot 1.5 \cdot 2.0 \cdot 2.5 \cdot 3.0 \text{ mg/L SiO}_2$	80	931 033
■ VISOCOLOR® ECO Silica HR 200 ²⁾	CO	10-200 mg/L SiO ₂	100	931 234
■ VISOCOLOR® HE Silicon	CO	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 mg/L Si	120	920 087
■ <i>NANOCOLOR®</i> Silica	ST	0.01-10.0 mg/L Si	250	918 48

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation. ²⁾ Only photometrically evaluable, with photometers PF-3 and/or PF-12/PF-12^{Plus}.

Silver (Ag+)

The precious metal silver is used in jewelry making, but also for batteries and mirrors. At low concentrations it acts also as a disinfectant for drinking water.

Product	Platform	Measuring range	Number of tests	REF
■ Silver test paper	QT	$>$ 20 mg/L Ag $^+$	200	907 32
■ Ag-Fix	HT	Silver: $0 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10$ g/L Ag ⁺ pH: $4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$	100	907 41
■ QUANTOFIX® Silver	HT	0 · 1 · 2 · 3 · 5 · 7 · 10 g/L Ag ⁺	100	913 50
■ NANOCOLOR® Silver 3	П	0.20–3.00 mg/L Ag ⁺	20	985 049

Sludge activity/TTC

The biochemical activity of sludge is an important parameter for the control of a sewage treatment plant.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® TTC 150	π	5–150 µg TPF	20	985 890

Sperm

See Phosphatase (page 42)

Starch

Starch is a polysaccharide and therefore a carbohydrate. The determination of starch is of special interest in food industry.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Starch 100	Π	5–100 mg/L starch	19	985 085

Sulfate (SO₄²⁻)

Sulfate is present in natural water and has an impact on its taste and smell. Therefore, it is controlled both in drinking water treatment and in food industry.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Sulfate	HT	< 200 · > 400 · > 800 · > 1200 · > 1600 mg/L SO ₄ ²⁻	100	913 29
■ VISOCOLOR® ECO Sulfate	CO	25 · 30 · 35 · 40 · 50 · 60 · 70 · 80 · 100 · 120 · 150 · 200 mg/L SO ₄ ²⁻	100	931 092
■ NANOCOLOR® Sulfate 1000	П	200-1000 mg/L SO ₄ ²⁻	20	985 087
■ NANOCOLOR® Sulfate 200	П	10-200 mg/L SO ₄ ²⁻	20	985 086
■ NANOCOLOR® Sulfate LR 200	П	20–200 mg/L SO ₄ ²⁻	20	985 062

Sulfide (S²⁻)

Sulfides are produced e.g. in the rotting of organic material. High concentrations of sulfides in waste water can cause damage to pipings and an unpleasant smell.

Product	Platform	Measuring range	Number of tests	REF
Lead acetate paper	QT	$>$ 5 mg/L $\rm H_2S$ or $\rm S^{2-}$	Reel, 5 m length Refill pack 100 strips	907 44 907 45 907 46
Sulfide test paper	QT	$>$ 5 mg/L $\rm H_2S$ or $\rm S^{2-}$	Reel, 5 m length	907 61
■ VISOCOLOR® ECO Sulfide 1)	CO	$0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.7 \cdot 0.8 \text{ mg/L S}^{2-}$	90	931 094
■ NANOCOLOR® Sulfide 3	π	0.05-3.00 mg/L S ²⁻	20	985 073
■ NANOCOLOR® Sulfide	ST	0.01–3.0 mg/L S ²⁻	250	918 88

¹⁾ Also suitable for photometrical evaluation on photometers PF-3 and/or PF-12/PF-12^{Plus}. Measuring range can differ in photometrical evaluation.

Parameters A-Z

Sulfite (SO₃²⁻)

Sulfite determination is important in wine industry for the control of production and quality of wine. Sulfite is used as an oxygen scavenger in process and boiler water. Here sulfite tests are carried out in order to avoid overdosing. These tests are also used to control the sulfite content of foods in which sulfur compounds are used as a preservative.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	> 5 mg/L SO ₂	Reel, 5 m length Refill pack 100 200	907 54 907 55 907 56 907 58
Sulfite test paper	QT	> 10 mg/L Na ₂ SO ₃	100	907 63
QUANTOFIX® Sulfite 3)	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L SO ₃ ²⁻	100	913 06
■ VISOCOLOR® ECO Sulfite	TI	1 drop equals 1 mg/L SO ₃ ²⁻	60	931 095
■ VISOCOLOR® HE Sulfite SU 100	TI	2-100 mg/L SO ₃ ²⁻	100	915 008
■ NANOCOLOR® Sulfite 100	П	5–100 mg/L SO ₃ ²⁻	19	985 090
■ NANOCOLOR® Sulfite 10	П	0.2–10.0 mg/L SO ₃ ^{2–}	20	985 089

Surfactants (detergents)

Surfactants are surface-active substances which are widely used in various industries, by soap manufacturers, and also in private households. Generally, one distinguishes between anionic, cationic, and nonionic surfactants. The concentration in municipal waste water can reach high levels, which are caused for example by laundry surfactants.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Detergents, anionic	CO	0.1 · 0.25 · 0.5 · 1.0 · 2.0 · 5.0 mg/L MBAS	50	931 050
■ VISOCOLOR® ECO Detergents, cationic	CO	0 · 1 · 3 · 5 · 10 · 15 · 20 mg/L CTAB	50	931 051
■ NANOCOLOR® Anionic surfactants 4	П	0.20-4.00 mg/L MBAS	20	985 032
■ NANOCOLOR® Cationic surfactants 4	П	0.20-4.00 mg/L CTAB	20	985 034
■ NANOCOLOR® Nonionic surfactants 15	П	0.3–15.0 mg/L Triton [®] X–100	20	985 047
■ NANOCOLOR® Detergents, anionic	ST	0.02-5.0 mg/L MBAS	40	918 32
■ NANOCOLOR® Detergents, cationic	ST	0.05-5.0 mg/L CTAB	100	918 34

Thiocyanate (SCN⁻)

Thiocyanate-containing waste water can form toxic cyanogen chloride if chlorine is added.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Thiocyanate 50	Π	0.5-50.0 mg/L SCN ⁻	20	985 091

Tin (Sn²⁺)

Tin is used as an alloying element e.g. in tinplate. Furthermore, soldering tin consists of more than 95 % tin nowadays. The food industry controls how much tin from a can is liberated into the food, since it can adversely affect the taste.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX [®] Tin	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L Sn²+	100	913 09
■ NANOCOLOR® Tin 3	П	0.10–3.00 mg/L Sn	18	985 097

TOC (total organic carbon)

The TOC value is a measure of all organic substances in waste water. It is easier to be determined instrumentally than the COD or BOD value. A conversion of the TOC value into COD is generally not readily possible.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® TOC 600	Π	40–600 mg/L C	10	985 099
■ NANOCOLOR® TOC 60	Π	10-60 mg/L C	10	985 094
■ NANOCOLOR® TOC 25	П	2.0-25.0 mg/L C	10	985 093
■ NANOCOLOR® TOC 300	П	20–300 mg/L C	20	985 078
■ NANOCOLOR® TOC 30	П	2.0–30.0 mg/L C	20	985 075

Total hardness

See Hardness (page 34)

Total sugar

Sugar is a key nutrient in food. In the context of the QUANTOFIX® test, total sugar means the sum of glucose and fructose. It is a quality criterion for potatoe processing and in beverage industry.

Product	Platform	Measuring range	Number of tests	REF		
QUANTOFIX® Total sugar 3)	HT	0 · 55 · 100 · 250 · 400 · 600 · 800 mg/L fructose / glucose	100	913 52		
3 Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.						

Toxicity

With the help of luminescent bacteria, the toxic effects of different substances can be investigated.

Product	Platform		Number of tests	REF
■ Luminous bacteria toxicity tests BioFix® Lumi	MB	-		940 945

TTC/Sludge activity

See Sludge activity/TTC (page 44)

Parameters A–Z

Turbidity

Turbidity is caused by small non-dissolved particles. These particles cause absorption, scattering and reflection of incident light. Turbidity is a frequently underestimated source of error in photometry. It affects the reading and is often visually not easy to recognize. Even a slight turbidity, imperceptible to the human eye, can extremely falsify analytical results. The turbidity measurements are carried out in the photometer with preprogrammed special methods. No separate test kits are needed for these measurements.

Product	Platform	Measuring range	Number of tests	REF
■ Turbidity (Formazin / DIN)	ST	1–100 TE/F (=FAU)/0.5–40 ¹ /m	_	_
■ Turbidity (NTU)	ТТ	0.1–1000 NTU	_	-

Udder inflammation

See Mastitis (page 37)

Vat dyes

See Dithionite (page 32)

Water (H_2O)

Various tests enable the detection of water in different applications.

Product	Platform	Measuring range	Number of tests	REF
■ AQUATEC test strips	QT	> 1–2 mm water layer	100	907 42
■ Waterfinder test paper	QT	Traces of water in non-polar solvents	Reel, 7 m length	906 30
■ Watesmo	QT	Traces of water in non-polar solvents	Reel, 5 m length	906 09
Wator	QT	Traces of water in butter	50	906 10

Water hardness

See Hardness (page 34)

Zinc (Zn²⁺)

Zinc salts are used in electroplating for the galvanic zinc coating of steel in order to achieve an effective rust prevention. Also in cooling waters, zinc salts are applied as corrosion protection agents.

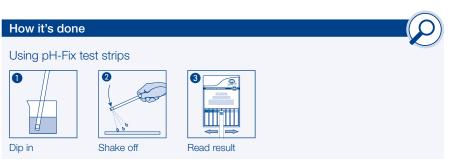
Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Zinc	HT	$0 \cdot 2 \cdot 5 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \text{ mg/L Zn}^{2+}$	100	913 10
■ VISOCOLOR® ECO Zinc 1)	CO	0 · 0.5 · 1 · 2 · 3 mg/L Zn ²⁺	120	931 098
■ NANOCOLOR® Zinc 4	π	0.10-4.00 mg/L Zn ²⁺	20	985 096
■ NANOCOLOR® Zinc	ST	0.02-3.0 mg/L Zn ²⁺	250	918 95
1) Also suitable for photometrical evaluation on photos	motors DE 2 and /or DE 12 /DE	1.10Plus Magaziring range can differ in photometrical evaluation		

Zirconium (Zr⁴⁺)

Zirconium is used in various applications as a replacement for chromate. It is also used as an adhesion promoter in surface treatment.

Product	Platform	Measuring range	Number of tests	REF
Zirconium test paper	QT	$> 20 \text{ mg/L Zr}^{4+}$	100	907 21
■ NANOCOLOR® Zirconium 100	TT	5–100 mg/L Zr	20	985 001

pH tests	
pH-Fix	52
PEHANON [®]	
Universal- and indicator papers	57
Duotest and Tritest	
Other pH indicators	59
Semi-quantitative test strips QUANTOFIX® AQUADUR® and other test strips	
Qualitative test papers Test papers without color chart	68



pH-Fix

Unmatched pH test strips

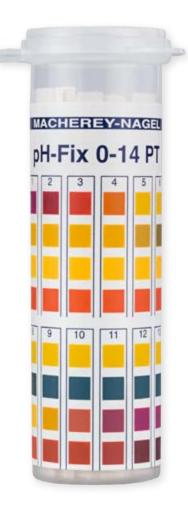
For many years untrained users as well as analytical professionals appreciate the experience of easy pH testing with pH-Fix. In contrast to common indicator papers, the indicator dyes in pH-Fix test strips are chemically bound to the test pads. This patented technology prevents bleeding of the dyes and therefore a contamination of the sample, even in highly alkaline solutions. The fixation enables the strips to remain in solution over extended periods of time allowing a safe pH determination even in weakly buffered solutions.

Optimized packages

In the classic packaging, the smart corner of the box safely prevents jamming of test strips. By simply tilting the box the strips fall easily into the smart corner allowing the closing with maximal comfort.

Especially users in the medical sector appreciate the robust PlopTop tube. The tube is higher than the length of the strips and can be easily opened and closed with the thumb of the holding hand. There is no risk of jamming the strip. The tube is virtually unbreakable and stands firmly on any flat surface.

CE-mark for medical applications


Some pH-Fix test strips are tested and approved for medical applications and carry a CE-mark for in-vitro-diagnostics 98/78/EG or medical products 93/42/EWG (for details see table). They meet the special demands of health care processionals and ensure safe results for medical pH testing.

Automatic evaluation with the QUANTOFIX® Relax

The strip reader QUANTOFIX® Relax (see page 144) allows the easy and reliable documentation of pH testing. The system provides objective and quantitative results. It allows printing and storing of test data including time and sample ID. Test strips covering the complete pH range can be evaluated using the QUANTOFIX® Relax (for details please see table on page 54).

Good to know

Many customers receive our pH-Fix test strips as an OEM product.

Rapid

- Dip & Read
- Results in seconds
- Always ready for use

Easy

- No calibration
- No maintenance
- No accessories

Reliable

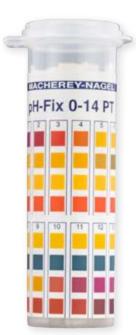
- Long handle for sufficient hand-sample-distance
- Brilliant color chart for precise readings
- Automatic evaluation with QUANTOFIX® Relax for safe documentation

Good to know

Many pH-Fix test strips can be also evaluated on the strip reader QUANTOFIX® Realx (see page 144)

Ordering information

Test	REF	Measuring range (visual)	Measuring range (instrumental) ¹⁾
■ 0–14	921 10	0.1.2.3.4.5.6.7.8.9.10.11.12.13.14	1–13
0.0-6.0	921 15	0 • 0.5 • 1.0 • 1.5 • 2.0 • 2.5 • 3.0 • 3.5 • 4.0 • 4.5 • 5.0 • 5.5 • 6.0	0.5–6.0
2.0-9.0	921 18	2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	2.0–9.0
4.5–10.0	921 20	4.5 • 5.0 • 5.5 • 6.0 • 6.5 • 7.0 • 7.5 • 8.0 • 8.5 • 9.0 • 9.5 • 10.0	4.5–10.0
6.0–10.0	921 22	6.0 • 6.4 • 6.7 • 7.0 • 7.3 • 7.6 • 7.9 • 8.2 • 8.4 • 8.6 • 8.8 • 9.1 • 9.5 • 10.0	6.0–10.0
7.0–14.0	921 25	7.0 • 7.5 • 8.0 • 8.5 • 9.0 • 9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0 • 12.5 • 13.0 • 13.5 • 14.0	7.0–13.5
0.3-2.3	921 80	0.3 · 0.7 · 1.0 · 1.3 · 1.6 · 1.9 · 2.3	-
1.7–3.8	921 90	1.7 · 2.0 · 2.3 · 2.6 · 2.9 · 3.2 · 3.5 · 3.8	-
■ 3.1–8.3	921 35	3.1 · 3.5 · 3.9 · 4.3 · 4.7 · 5.1 · 5.5 · 5.9 · 6.3 · 6.7 · 7.1 · 7.5 · 7.9 · 8.3	-
3.6-6.1	921 30	3.6 • 4.1 • 4.4 • 4.7 • 5.0 • 5.3 • 5.6 • 6.1	3.6-6.1
4.0–7.0	921 37	4.0 • 4.4 • 4.7 • 5.0 • 5.3 • 5.5 • 5.8 • 6.1 • 6.5 • 7.0	-
5.1–7.2	921 40	5.1 · 5.4 · 5.7 · 6.0 · 6.3 · 6.6 · 6.9 · 7.2	-
6.0–7.7	921 50	6.0 • 6.4 • 6.7 • 7.0 • 7.3 • 7.7	6.0–7.7
7.5–9.5	921 60	7.5 • 7.9 • 8.2 • 8.4 • 8.6 • 8.8 • 9.1 • 9.5	-
7.9–9.8	921 70	7.9 • 8.3 • 8.6 • 8.9 • 9.1 • 9.4 • 9.8	-
■ 0–14 PT	921 11	0.1.2.3.4.5.6.7.8.9.10.11.12.13.14	1–13
■ 3.6–6.1 PT	921 31	3.6 • 4.1 • 4.4 • 4.7 • 5.0 • 5.3 • 5.6 • 6.1	3.6–6.1
■ 4.5–10.0 PT	921 21	4.5 • 5.0 • 5.5 • 6.0 • 6.5 • 7.0 • 7.5 • 8.0 • 8.5 • 9.0 • 9.5 • 10.0	4.5–10.0
	,		


CE/urine: According to IVD directive 98/79/EG approved for pH determination in urine, for self-testing also.
CE/gastric juice: According to IVD directive 98/79/EG approved for pH determination in gastric juice, for professional use only.
CE/saliva: According to IVD directive 98/79/EG approved for pH determination in saliva, for professional use only.

CE/vaginal secretion: According to IVD directive 98/79/EG approved for pH determination in vaginal secretion, for professional use only.

CE/dailysis: According to medical devices directive 93/42/EWG approved for pH determination in rinsing solution after disinfection of dialyzers.

1) Together with QUANTOFIX® Relax, the test strips may not be used for any medical application.

		/	Cliff Character	, pot	rjbo /		icijico		indescription of the contraction	<u>*</u>
Number of tests	Shelf life	OURT	O. Classic	Not of Store	Pillos CE list	(f) (g	stic like	P/1/2	jird se s	N. S.
100	4 years									0–14
100	4 years									0.0-6.0
100	4 years									2.0-9.0
100	4 years									4.5–10.0
100	4 years									6.0–10.0
100	4 years									7.0–14.0
100	4 years									0.3–2.3
100	4 years									1.7–3.8
100	4 years									3.1–8.3
100	4 years									3.6–6.1
100	4 years									4.0-7.0
100	4 years									5.1–7.2
100	4 years									6.0–7.7
100	4 years									7.5–9.5
100	4 years									7.9–9.8
100	4 years									0–14 PT
100	4 years									3.6-6.1 PT
100	4 years									4.5–10.0 PT

PEHANON®

pH determination in colored samples

PEHANON® test strips unify pH indicator and reference color chart on one strip. Any sample color has the same effect on both, the reference colors and the reactive pad, allowing unadulterated pH reading even in colored solutions.

Safe testing of hazardous samples

An invisible hydrophobic barrier just above the top color field prevents migration of the sample. The handle remains dry and clean and the user is safely protected from contamination due to capillary rise.

No separate color chart needed

PEHANON® test strips can be read without a separate color chart. Workers in production can use single strips instead of complete packs making the product very economical.

Ordering information

•				
Test	REF	Measuring range	Number of Tests	Shelf life
■ pH 1–12	904 01	1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12	200	3 years
■ pH 0–1.8	904 11	0 • 0.3 • 0.6 • 0.8 • 1.0 • 1.2 • 1.5 • 1.8	200	3 years
■ pH 1.0–2.8	904 12	1.0 · 1.3 · 1.6 · 1.8 · 2.0 · 2.2 · 2.5 · 2.8	200	3 years
■ pH 1.8–3.8	904 13	1.8 · 2.1 · 2.4 · 2.7 · 3.0 · 3.2 · 3.5 · 3.8	200	3 years
■ pH 2.8–4.6	904 14	2.8 · 3.1 · 3.4 · 3.6 · 3.8 · 4.0 · 4.3 · 4.6	200	3 years
■ pH 3.8–5.5	904 15	3.8 · 4.0 · 4.2 · 4.4 · 4.6 · 4.9 · 5.2 · 5.5	200	3 years
■ pH 4.0–9.0	904 24	4.0 • 4.5 • 5.0 • 5.5 • 6.0 • 6.5 • 7.0 • 7.5 • 8.0 • 8.5 • 9.0	200	3 years
■ pH 5.2–6.8	904 16	5.2 · 5.5 · 5.7 · 5.9 · 6.1 · 6.3 · 6.5 · 6.8	200	3 years
■ pH 6.0–8.1	904 17	6.0 · 6.3 · 6.6 · 6.9 · 7.2 · 7.5 · 7.8 · 8.1	200	3 years
■ pH 7.2–8.8	904 19	7.2 · 7.4 · 7.6 · 7.8 · 8.0 · 8.2 · 8.5 · 8.8	200	3 years
■ pH 8.0–9.7	904 20	8.0 · 8.2 · 8.4 · 8.6 · 8.8 · 9.1 · 9.4 · 9.7	200	3 years
■ pH 9.5–12.0	904 21	9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0	200	3 years
■ pH 10.5–13.0	904 22	10.5 · 11.0 · 11.5 · 12.0 · 12.5 · 13.0	200	3 years
■ pH 12.0–14.0	904 23	12.0 · 12.5 · 13.0 · 13.5 · 14.0	200	3 years

Universal- and indicator papers

pH indicator papers - standard for many applications

pH indicator papers have been available for decades and are the standard for many applications. For each pH value these papers show a single color which can be matched with the color scale at intervals of 0.2-1 pH units. The indicator papers come in plastic reels that ensure long-term stability and protection against many external influences. They will be always ready-to-use when needed.

MACHEREY-NAGEL also controls the production of the raw papers which ensures – in combination with our ISO 9001 QC system – the high quality of the indicator papers.

The colors of the scales are specially mixed to perfectly match the reaction color of the indicator papers. This makes the reading of results easy and accurate.

Good to know

We produce pH indicator booklets for pharmaceutical industries with a CE-marking for urine diagnostics.

Ordering information

Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–11	902 01	902 02	1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11	Reel of 5 m length and 7 mm width	3 years
■ pH 1–11	902 03	=	1.2.3.4.5.6.7.8.9.10.11	Booklet with 100 strips 10 x 70 mm	3 years
■ pH 1–14	902 04	902 24	1 · 2 · 3 · 5 · 6 · 7 · 8 · 9 · 10 · 12 · 14	Reel of 5 m length and 7 mm width	3 years
■ pH 0.5–5.5	902 05	902 25	0.5 • 1.0 • 1.5 • 2.0 • 2.5 • 3.0 • 3.5 • 4.0 • 4.5 • 5.0 • 5.5	Reel of 5 m length and 7 mm width	3 years
■ pH 3.8–5.8	902 06	902 26	< 3.8 · 3.8 · 4.1 · 4.3 · 4.5 · 4.7 · 4.9 · 5.2 · 5.5 · 5.8 · > 5.8	Reel of 5 m length and 7 mm width	3 years
■ pH 4.0–7.0	902 07	902 27	4.0 · 4.3 · 4.6 · 4.9 · 5.2 · 5.5 · 5.8 · 6.1 · 6.4 · 6.7 · 7.0	Reel of 5 m length and 7 mm width	3 years
■ pH 5.4–7.0	902 08	902 28	< 5.4 · 5.4 · 5.7 · 6.0 · 6.2 · 6.4 · 6.7 · 7.0 · > 7.0	Reel of 5 m length and 7 mm width	3 years
■ pH 5.5–9.0	902 09	902 29	5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	Reel of 5 m length and 7 mm width	3 years
■ pH 6.4–8.0	902 10	902 30	< 6.4 · 6.4 · 6.6 · 6.8 · 7.0 · 7.2 · 7.4 · 7.6 · 7.8 · 8.0 · > 8.0	Reel of 5 m length and 7 mm width	3 years
■ pH 7.2–9.7	902 11	902 31	< 7.2 · 7.2 · 7.5 · 7.8 · 8.1 · 8.4 · 8.7 · 9.0 · 9.3 · 9.7 · > 9.7	Reel of 5 m length and 7 mm width	3 years
■ pH 8.0–10.0	902 12	902 32	8.0 · 8.2 · 8.4 · 8.7 · 9.0 · 9.2 · 9.6 · 10.0	Reel of 5 m length and 7 mm width	3 years
■ pH 9.0–13.0	902 13	902 33	9.0 • 9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0 • 12.5 • 13.0	Reel of 5 m length and 7 mm width	3 years
■ pH 12.0–14.0	902 14	902 34	12.0 • 12.5 • 13.0 • 13.5 • 14.0	Reel of 5 m length and 7 mm width	3 years
refill: Refill pack					

Duotest and Tritest

pH papers with multiple indicator zones

By the combination of several indicators on one test paper, a better recognition between different pH values is achieved. This makes the correct pH reading easier.

Duotest - two indicator zones for higher accuracy

Duotest indicator papers combine two different indicator zones on a single strip. The zones are separated by a hydrophobic barrier, which effectively prevents mixing of the reaction colors and increases the mechanical stability.

Tritest – three indicator zones for highest precision

Tritest indicator paper has three different indicator zones on a single paper. The three zones guarantee optimal color differences and safe determination of in-between values. Tritest indicator paper is available for a pH range from 1–11 and feature 1 pH unit increments.

In Tritest L indicator paper, two hydrophobic barriers separate the indicator zones. Even in strongly alkaline solutions, the colors of the zones do not mix.

Ordering information

Duotest

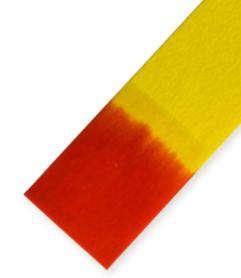
Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–12	903 01	903 11	1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12	Reel of 5 m length and 10 mm width	3 years
■ pH 1.0–4.3	903 02	903 12	1.0 · 1.3 · 1.6 · 1.9 · 2.2 · 2.5 · 2.8 · 3.1 · 3.4 · 3.7 · 4.0 · 4.3	Reel of 5 m length and 10 mm width	3 years
■ pH 3.5–6.8	903 03	903 13	3.5 · 3.8 · 4.1 · 4.4 · 4.7 · 5.0 · 5.3 · 5.6 · 5.9 · 6.2 · 6.5 · 6.8	Reel of 5 m length and 10 mm width	3 years
■ pH 5.0–8.0	903 04	903 14	5.0 · 5.3 · 5.6 · 5.9 · 6.2 · 6.5 · 6.8 · 7.1 · 7.4 · 7.7 · 8.0	Reel of 5 m length and 10 mm width	3 years
■ pH 7.0–10.0	903 05	903 15	7.0 • 7.3 • 7.6 • 7.9 • 8.2 • 8.5 • 8.8 • 9.1 • 9.4 • 9.7 • 10.0	Reel of 5 m length and 10 mm width	3 years
■ pH 9.5–14.0	903 06	903 16	9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0 • 12.5 • 13.0 • 13.5 • 14.0	Reel of 5 m length and 10 mm width	3 years
■ pH-Set D10	903 19	_	-	Box with 10 reels of Duotest	3 years
refill: Refill pack					

Tritest

Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–11	905 01	905 02	$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11$	Reel of 5 m length and 10 mm width	3 years
■ L pH 1–11	905 10	905 11	1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11	Reel of 6 m length and 14 mm width	3 years
refill: Refill pack					

Other pH indicators

pH papers without color chart and indicator solutions


For some specific analytical questions, qualitative pH papers or indicator solutions are used.

Simplest acid/base determination

Qualitative pH papers without color chart are simple, completely impregnated indicator papers. They indicate if the pH of a solution is above or below the transition point (color change) and are useful to distinguish between acids and bases.

pH determinations in weakly buffered solutions

UNISOL indicator solutions are used for pH determination in pure water, in surface waters and in very dilute acids or bases. An indicator solution is added to the sample and the reaction color is compared with a color scale. Therefore, they allow the easy and reliable pH determination in weakly buffered solutions.

Ordering information

pH papers without color scale

Test	REF	REF refill	Color change / pH	Presentation	Shelf life	GHS
■ Brilliant yellow paper	907 01	_	yellow \rightarrow red / 6.7–7.9	Box of 200 strips 20 x 70 mm	3 years	
Congo paper MN 816 N	907 02	907 03	red → blue / 5.0-3.0	Reel of 5 m length and 7 mm width	3 years	
Congo paper MN 616 T	907 04	-	red → blue / 5.0-3.0	Box of 200 strips 20 x 70 mm	3 years	
Congo paper MN 260 HE	907 05	-	red → blue / 5.0-3.0	Box of 200 strips 20 x 70 mm	3 years	
Litmus paper blue	911 06	911 16	blue → red / 8.0-5.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper blue	911 26	=	blue → red / 8.0-5.0	Booklet of 100 strips 10 x 70 mm	3 years	
Litmus paper neutral	911 07	911 17	red → violet-blue / 5.0-8.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper neutral	911 27	=	red → violet-blue / 5.0-8.0	Booklet of 100 strips 10 x 70 mm	3 years	
Litmus paper red	911 08	911 18	red → blue / 5.0-8.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper red	911 28	-	red → blue / 5.0-8.0	Booklet of 100 strips 10 x 70 mm	3 years	
■ Nitrazine yellow paper	907 11	_	yellow → blue-violet / 6.0–7.0	Box of 200 strips 20 x 70 mm	3 years	
Phenolphthalein paper	907 12	907 13	white → red / 8.3-10.0	Reel of 5 m length and 7 mm width	3 years	

refill: Refill pack

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

UNISOL

Test	REF	Measuring range	Presentation	Shelf life	GHS
■ 410, pH 4–10	910 02	4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 9.5 · 10.0	1 bottle of 100 mL, color chart + cuvette	3 years	
■ 113, pH 1–13	910 31	1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13	1 bottle of 100 mL, color chart + cuvette	3 years	
Plastic cuvettes MN 13/72	910 39	-	Pack of 5 rectangular cuvettes	_	

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

QUANTOFIX®

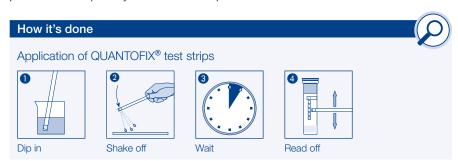
Semi-quantitative test strips

QUANTOFIX® test strips meet all requirements of a modern rapid test. The color of the reactive pad changes depending on the concentration of an analyte in the sample. The evaluation is usually carried out visually by a comparison of the reaction color with a multi-stage color scale.

Easy analysis directly at the point of interest

Analytical professionals as well as occasional testers appreciate QUANTOFIX® test strips for the fast and easy analysis directly at the point of interest. Often, these tests are used to quickly check whether important parameters are in the desired range. They deliver an immediate result and thus enable a fast response.

Complete mini-lab


QUANTOFIX® tests are immediately ready-to-use. They do not require additional accessories. The test strips are intended for single use, maintenance or calibration are not required.

CE-mark for medical applications

Some QUANTOFIX® test strips are tested and approved for medical applications and carry a CE-mark for medical products 93/42/EWG (see page 62). They meet the special demands of health care processionals and ensure safe results in the medical field.

Quantitative, documented results with QUANTOFIX® Relax

The strip reader QUANTOFIX® Relax (see page 144) provides objective and quantitative results for many important parameters (see page 62). Measurement data including time, date and sample ID are printed and stored and can be transmitted to an information system. This allows the rapid and reliable documentation of test results, which proved to be especially useful for QC departments.

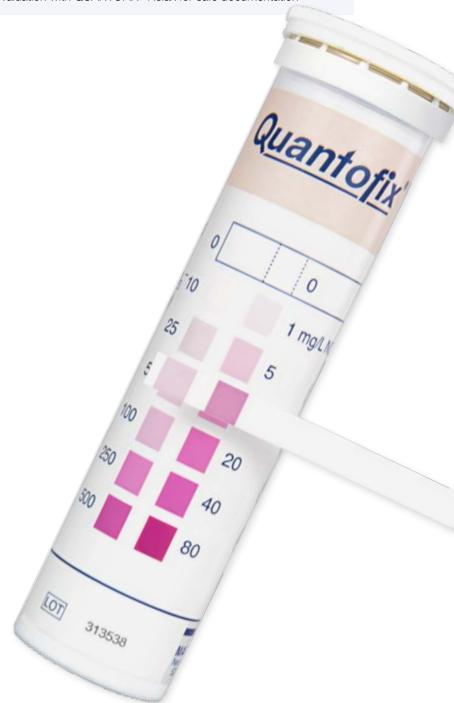
Good to know

Many customers receive our QUANTOFIX® test strips as OEM product.

Rapid

- Just Dip & Read
- Results within seconds
- Always ready for use

Easy


- No calibration
- No maintenance
- No accessories

Reliable

- Desiccant in the stopper for optimal protection of the strips against humidity
- Color chart confirmed with traceable standards
- Automatic evaluation with QUANTOFIX® Relax for safe documentation

Good to know

Many QUANTOFIX® test strips can be also evaluated on the strip reader QUANTOFIX® Realx (see page 144).

Ordering information

Test .	REF	Measuring range (visual)	Measuring range (instrumental) ¹⁾	Number of tests
Active oxygen	913 49	0 · 4 · 8 · 15 · 25 mg/L KMPS	-	100
Aluminum	913 07	0 · 5 · 20 · 50 · 200 · 500 mg/L Al ³⁺	_	100
■ Ammonium	913 15	0 · 10 · 25 · 50 · 100 · 200 · 400 mg/L NH ₄ +	10-350 mg/L NH ₄ +	100
Arsenic 10	913 34	0 · 0.01 · 0.025 · 0.05 · 0.1 · 0.5 mg/L As ^{3+/5+}	_	100
Arsenic 50	913 32	0 · 0.05 · 0.1 · 0.5 · 1.0 · 1.7 · 3.0 mg/L As ^{3+/5+}	-	100
Arsenic Sensitive	913 45	0 · 0.005 · 0.01 · 0.025 · 0.05 · 0.1 · 0.25 · 0.5 mg/L As ^{3+/5+}	_	100
Ascorbic acid	913 14	0 · 50 · 100 · 200 · 300 · 500 · 700 · 1000 · 2000 mg/L vitamin C	25-1000 mg/L vitamin C	100
Calcium	913 24	0 · 10 · 25 · 50 · 100 mg/L Ca ²⁺	-	60
Carbonate hardness	913 23	0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e	_	100
Chloride	913 21	0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	-	100
Chlorine	913 17	0 · 1 · 3 · 10 · 30 · 100 mg/L Cl ₂	_	100
Chlorine Sensitive	913 39	0 · 0.1 · 0.5 · 1 · 3 · 10 mg/L Cl ₂	0.1–10 mg/L Cl ₂	100
Chromate	913 01	0 · 3 · 10 · 30 · 100 mg/L CrO ₄ ²⁻	-	100
Cobalt	913 03	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Co ²⁺	-	100
Copper	913 04	0 · 10 · 30 · 100 · 300 mg/L Cu ^{+/2+}	=	100
Cyanide	913 18	0 · 1 · 3 · 10 · 30 mg/L CN⁻	-	100
EDTA	913 35	0 · 100 · 200 · 300 · 400 mg/L EDTA	-	100
Formaldehyde	913 28	0 · 10 · 20 · 40 · 60 · 100 · 200 mg/L HCHO	10-200mg/L HCHO	100
Glucose	913 48	0 · 50 · 100 · 250 · 500 · 1000 · 2000 mg/L glucose	50-2000 mg/L glucose	100
Glutaraldehyde	913 43	0 · 0.5 · 1.0 · 1.5 · 2.0 · 2.5 % glutaraldehyde	-	100
LubriCheck	913 36	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	-	100
Molybdenum	913 25	0 · 5 · 20 · 50 · 100 · 250 mg/L Mo ⁶⁺	-	100
Nickel	913 05	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Ni ²⁺	=	100
Nitrate 100	913 51	Nitrate: $0 \cdot 5 \cdot 10 \cdot 25 \cdot 50 \cdot 75 \cdot 100 \text{ mg/L NO}_3^-$ Nitrite: $0 \cdot 0.5 \cdot 2 \cdot 5 \cdot 10 \cdot 25 \cdot 50 \text{ mg/L NO}_2^-$	Nitrate: 3–100 mg/L NO ₃ ⁻ Nitrite: 0.5–50 mg/L NO ₂ ⁻	100
Nitrate/Nitrite	913 13	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	Nitrate: 10–500 mg/L NO ₃ ⁻ Nitrite: 0.5–80 mg/L NO ₂ ⁻	100
Nitrite	913 11	0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	0.5–80 mg/L NO ₂ ⁻	100
Nitrite 3000	913 22	0 · 0.1 · 0.3 · 0.6 · 1 · 2 · 3 g/L NO ₂ ⁻	-	100
■ Nitrite / pH	913 38	Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻ pH: 6.0 · 6.4 · 6.7 · 7.0 · 7.3 · 7.6 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.0 · 9.3 · 9.6	-	100
Peracetic acid 50	913 40	0 · 5 · 10 · 20 · 30 · 50 mg/L peracetic acid	5-50 mg/L peracetic acid	100
Peracetic acid 500	913 41	0 · 50 · 100 · 200 · 300 · 400 · 500 mg/L peracetic acid	50-500 mg/L peracetic acid	100
Peracetic acid 2000	913 42	0 · 500 · 1000 · 1500 · 2000 mg/L peracetic acid	500-2000 mg/L peracetic acid	100
Peroxide 25	913 19	0 · 0 · 5 · 2 · 5 · 10 · 25 mg/L H ₂ O ₂	0.5–25 mg/L H ₂ O ₂	100
Peroxide 100	913 12	0 · 1 · 3 · 10 · 30 · 100 mg/L H ₂ O ₂	1–100 mg/L H ₂ O ₂	100
Peroxide 1000	913 33	0 · 50 · 150 · 300 · 500 · 800 · 1000 mg/L H ₂ O ₂	50-1000 mg/L H ₂ O ₂	100
Phosphate	913 20	0·3·10·25·50·100 mg/L PO ₄ ³⁻	3-80 mg/L PO ₄ ³⁻	100
Potassium	913 16	0 · 200 · 400 · 700 · 1000 · 1500 mg/L K⁺	=	100
QUAT	913 37	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L benzalkonium chloride	_	100

Together with QUANTOFIX® Relax, the test strips may not be used for any medical application.
 Sets of 3 individually sealed test strips, pack of 50 sets.
 GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

She	elf life	Method	Color change	N. C.	Pelat Pelat	d koopit	Sto Sto	/ /*
0.5		Declaring		\ \disp.	Por	/ 🞸	\ <u>Q</u> ,	
	years	Redox reaction	yellow → green					Active oxygen
	years	Aurin tricarboxylic acid	pink→red		-		_	Aluminum
	years	Nessler	bright yellow → orange					Ammonium
	years	Modified Gutzeit test	white → yellow-brown					Arsenic 10
	years	Modified Gutzeit test	white → yellow-brown					Arsenic 50
2.5	years	Modified Gutzeit test	white → yellow-brown					Arsenic Sensitive
2.5	years	Phosphomolybdenum blue	yellow → green-blue					Ascorbic acid
2.5	years	Glyoxal-bis(2-hydroxyaniline)	yellow→red					Calcium
2.5	years	Mixed indicator	bright green → blue					Carbonate hardness
2.5	years	Silver chromate	brown → yellow					Chloride
2.5	years	Redox reaction	white → red-violet					Chlorine
2.5	years	Redox reaction	yellow → violet					Chlorine Sensitive
2 ye	ears	Carbazide	white → violet					Chromate
2.5	years	Rhodanid	white → green-blue					Cobalt
2.5	years	Biquinoline	white → red-violet					Copper
2.5	years	Barbituric acid derivative	white → violet					Cyanide
2.5	years	Bismut-xylenolorange	red → yellow					EDTA
2.5	years	Triazol	beige → blue-violet					Formaldehyde
2.5	years	Enzymatic	yellow → blue-green					Glucose
2.5	years	Mixed indicator	bright orange → magenta					Glutaraldehyde
2.5	years	Mixed indicator	yellow → blue					LubriCheck
2.5	years	Dithiol	white → green					Molybdenum
2.5	years	Dimethylglyoxim	white → bright-red					Nickel
2.5	years	Nitrate: modified Griess reaction Nitrite: Griess reaction	yellow → red-violet yellow → red-violet	•				Nitrate 100
2.5	years	Nitrate: modified Griess reaction Nitrite: Griess reaction	Nitrate: white → red-violet Nitrite: white → red-violet	•				Nitrate / Nitrite
2.5	years	Griess reaction	white → red-violet					Nitrite
2.5	years	Griess reaction	yellow→red					Nitrite 3000
2.5	years	Nitrite: Griess reaction pH: mixed indicator	Nitrite: white → red-violet pH: yellow-orange → violet-red					Nitrite/pH
2.5	years	Redox reaction	white → blue					Peracetic acid 50
2.5	years	Redox reaction	yellow → green					Peracetic acid 500
2.5	years	Redox reaction	bright yellow → red	•		•		Peracetic acid 2000
2.5	years	Redox reaction	white → blue	-				Peroxide 25
2.5	years	Redox reaction	white → blue					Peroxide 100
2.5	years	Redox reaction	white → brown					Peroxide 1000
2.5	years	Phosphomolybdenum blue	white → blue-green					Phosphate
2.5	years	Dipikrylamine	yellow → orange					Potassium
25	years	Mixed indicator	yellow → blue-green					QUAT

www.mn-net.com 63

Test	REF	Measuring range (visual)	Measuring range (instrumental) ¹⁾	Number of tests
Silver	913 50	$0 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10 \text{ g/L Ag}^{+}$	_	100
■ Sulfate	913 29	< 200 · > 400 · > 800 · > 1200 · > 1600 mg/L SO ₄ ²⁻	-	100
■ Sulfite	913 06	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L SO ₃ ²⁻	10-500 mg/L SO ₃ ²⁻	100
■ Tin	913 09	0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L Sn ²⁺	-	100
■ Total acid	913 53	0 · 2 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 g/L citric acid	2-5 g/L citric acid	100
■ Total iron 100	913 44	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Fe ^{2+/3+}	-	100
■ Total iron 1000	913 30	0 · 5 · 20 · 50 · 100 · 250 · 500 · 1000 mg/L Fe ^{2+/3+}	-	100
■ Total sugar	913 52	0 · 55 · 100 · 250 · 400 · 600 · 800 mg/L fructose / glucose	55–700 mg/L fructose/ glucose	100
■ Zinc	913 10	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Zn ²⁺	-	100
■ Nitrate test sets	913 918	$0 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \cdot 250 \cdot 500$ mg/L NO $_3$ ⁻ without nitrite chart, but with nitrite test field	-	150 ²⁾
Multistick for aquarium owners	913 26 913 27	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	-	100 25

 $^{^{1)}}$ Together with QUANTOFIX $^{\!\otimes}$ Relax, the test strips may not be used for any medical application.

¹ Sets of 3 individually sealed test strips, pack of 50 sets.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

			Charles to the control of the contro				
Shelf life	Method	Color change	OURT	Addition	CE 198	CALS.	1 St. St.
2.5 years	Silver sulfide	yellow→brown					Silver
2.5 years	Ba-thorine-complex	red → yellow					Sulfate
2.5 years	Nitroprussid/Zn-hexacyanoferrate	white → salmon					Sulfite
2.5 years	Phosphomolybdic acid	white → dark blue					Tin
2.5 years	Mixed indicator	pink → yellow					Total acid
2.5 years	Triazine	white → blue-violet					Total iron 100
2.5 years	2,2'-bipyridine	white → dark red					Total iron 1000
1 year at 2–8 °C	Enzymatic	yellow → ocher	•	•			Total sugar
2.5 years	Dithizone	orange → red					Zinc
2.5 years	Nitrate: modified Griess reaction Nitrite: Griess reaction	white → red-violet					Nitrate test sets
2.5 years	Total hardness: EDTA Carbonate hardness: mixed indicator pH: mixed indicator	Total hardness: green → red Carbonate hardness: bright green → blue pH: yellow → red					Multistick for aquarium owners

AQUADUR® and other test strips

Tests for special applications

A range of tests was developed for specific applications and questions. They provide solutions for particular requirements.

AQUADUR® – easy determination of water hardness

AQUADUR® test strips are made for the easy determination of water hardness allowing to optimize the dosing of water softeners.

AQUADUR® Sensitive – highly sensitive determination of water hardness

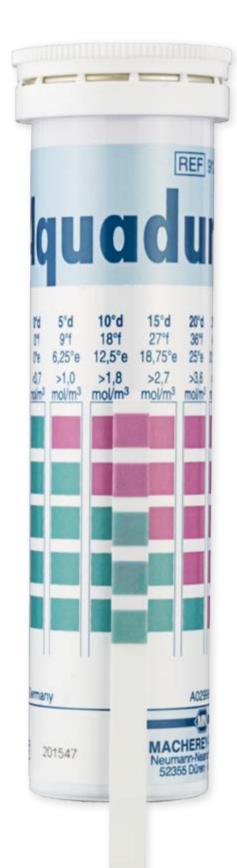
Feed water for reversed osmosis units needs to have a very low water hardness. AQUADUR® Sensitive is used, for example, in dialysis practices to test the quality of the water after the first softening.

Moisture indicators without cobalt chloride

Commonly used moisture indicators often contain cobalt chloride which has been found to be carcinogenic and toxic. Contact to these types of indicators may present a health and safety risk to staff. The patented non-toxic moisture indicators eliminate these risks and increase safety. They have a very clear color change from red to yellow.

Good to know

< 50 ppm CaCO₃ – very soft water 50-120 ppm CaCO₃ - soft water 120-240 ppm CaCO₃ - medium hard water 240-360 ppm CaCO₃ - hard water Above 360 ppm CaCO₃ – very hard water


Ordering information

Test	REF	Measuring range	Presentation
Ag-Fix for silver in fixing baths	907 41	0·0.5·1·2·3·5·7·10 g/L Ag ⁺ pH 4·5·6·7·8	Box of 100 test strips 6 x 95 mm
Ammonia test	907 14	0 · 0.5 · 1 · 3 · 6 mg/L NH ₄ +	Box of 25 test strips 7 x 60 mm
■ AQUADUR® 4–14, box	912 39	< 54 · > 72 · > 151.2 · > 252 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
■ AQUADUR® 4–21, box	912 20	< 54 · > 72 · > 126 · > 252 · > 378 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
■ AQUADUR® 4–21, bulk	912 22	< 54 · > 72 · > 126 · > 252 · > 378 ppm CaCO ₃	Pack of 5000 test strips without scale
■ AQUADUR® 4-21, individually sealed	912 24	< 54 · > 72 · > 126 · > 252 · > 378 ppm CaCO ₃	1000 test strips, individually sealed with scale
■ AQUADUR® 4–21, individually sealed	912 40	< 54 · > 72 · > 151.2 · > 252 · > 378 ppm CaCO ₃	1000 test strips, individually sealed with scale
AQUADUR® 5–25, box	912 01	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
■ AQUADUR® 5–25, bulk	912 21	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	Pack of 5000 test strips without scale
AQUADUR® 5-25, individually sealed	912 23	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	1000 test strips, individually sealed with scale
■ AQUADUR® 5–25, test sets	912 902	< 54 ·> 90 ·> 180 ·> 270 ·> 360 ·> 450 ppm CaCO ₃	Sets of 3 individually sealed test strips, pack of 50 sets
■ AQUADUR® Sensitive, box	912 10	0 · 5.4 · 10.8 · 18.8 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
Chlorine test	907 09	10 · 50 · 100 · 200 mg/L Cl ₂	Reel of 5 m length and 10 mm width
Cyanuric acid test (swimming pools)	907 10	0 · 50 · 100 · 150 · 300 mg/L Cya	Box of 25 test strips 6 x 95 mm
■ Fluoride test	907 34	0 · 2 · 5 · 10 · 20 · 50 · 100 mg/L F ⁻	Box of 30 test discs with reagents
Indiquat (QUATs)	-	According to customer request	Reel of 5 m length and 10 mm width
■ Moisture indicator	908 01	20 · 30 · 40 · 50 · 60 · 70 · 80 % rel. humidity	Pack of 12 adhesive labels 50 x 100 mm
■ Moisture indicator	908 901	8% rel. humidity	Pack of 1000 pcs 60 x 35 mm
Non-toxic moisture indicator without cobalt chloride	908 903	8% rel. humidity	Pack of 1000 pcs 60 x 35 mm
Ozone test (air)	907 36	< 90 · 90–150 · 150–210 · > 210 μg/m³ O ₃	Box of 12 test strips 10 x 95 mm
Saltesmo (halide ions)	906 08	0 · 0.25 · 0.5 · 1 · 2 · 3 · 4 · 5 g/L NaCl	Box of 30 test discs
Swimming pool test 3 in 1	907 52	Free Chlorine: 0 · 0.5 · 1 · 3 · 5 · 10 mg/L Cl ₂ Alkalinity: 0 · 80 · 120 · 180 · 240 mg/L CaCO ₃ pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.4	Box of 50 test strips 6 x 95 mm
Swimming pool test 5 in 1	907 59	like 907 52, in addition: total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃	Box of 50 test strips 6 x 95 mm

CE/dialysis: According to IVD Directive 93/42/EWG approved for the determination of water hardness before the purification to dialysis water, professional use only. GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

AQUADUR® and other test strips

	/,8	nės /	
Shelf life	OF Jane		Įς. Š*
2.5 years	/	/	Ag-Fix for silver in fixing baths
2.5 years			Ammonia test
2 years			AQUADUR® 4–14, box
2 years			AQUADUR® 4–21, box
15 months			AQUADUR® 4–21, bulk
1 year			AQUADUR® 4–21, individually sealed
1 year			AQUADUR® 4-21, individually sealed
2 years			AQUADUR® 5–25, box
15 months			AQUADUR® 5–25, bulk
1 year			AQUADUR® 5–25, individually sealed
1 year			AQUADUR® 5-25, test sets
2 years			AQUADUR® Sensitive, box
2 years			Chlorine test
2.5 years			Cyanuric acid test (swimming pools)
2 years			Fluoride test
2 years			Indiquat (QUATs)
2 years			Moisture indicator
1 year			Moisture indicator
1 year			Moisture indicator without cobalt chloride
1.5 years			Ozon test (air)
1.5 years			Saltesmo (halide ions)
2 years			Swimming pool test 3 in 1
2 years			Swimming pool test 5 in 1

Test papers without color chart

Simple test papers for qualitative determinations

These test papers come without a color scale. With little effort, the presence of ions and other substances can be detected. The test papers change color when the concentration is above the specified limit of detection.

Test papers for criminal investigations

Peroxtesmo KM is sensitive to peroxidase and detects blood traces.

Sperm traces can be detected using Phosphatesmo KM which is specific for acidic phosphatase. Both test papers are used in the investigation of crime scenes.

Test papers for milk analysis

The test paper Peroxtesmo MI allows the easy distinction between raw milk and high temperature milk. It is sensitive for the enzyme lactoperoxidase. In contrast to liquid indicators based on guaiacol, Peroxtesmo MI does not smell and comes without hazardous reagents which is convenient and safe for the user.

Phosphatesmo MI detects alkaline phosphatase in milk and is a rapid and easy indicator for the successful pasteurization of milk.

Test papers for oil and oil tanks

Oil test paper is recommended for the rapid determination of oil contaminations in water and soil. On contact with oil the paper turns dark blue.

AQUATEC allows the easy and reliable detection of water at the bottom of petrol and fuel oil tanks. It is also suitable to measure the thickness of water layers in oil separators.

Ordering information

Test	REF	Determination of	Presentation
Aluminum test paper	907 21	Aluminum ions (Al ³⁺)	Box of 100 strips 20 x 70 mm
Ammonium test paper	907 22	Ammonia, ammonium ions (NH3, NH4+)	Box of 200 strips 20 x 70 mm
Antimony test paper	907 23	Antimony ions (Sb ³⁺)	Box of 200 strips 20 x 70 mm
AQUATEC test strips	907 42	Water on the bottom of fuel tanks	Box of 100 strips 10 x 200 mm
Arsenic test paper	907 62	Arsenic, arsine (As, AsH ₃)	Box of 200 strips 20 x 70 mm
■ Bismuth test paper	907 33	Bismuth ions (Bi ³⁺)	Box of 200 strips 20 x 70 mm
Chlortesmo	906 03	Chlorine, free halogens	Box of 200 strips 20 x 70 mm
Chromium test paper	907 24	Chromium, chromate (Cr(VI) CrO ₄ ²⁻)	Box of 200 strips 20 x 70 mm
Cobalt test paper	907 28	Cobalt ions (Co ²⁺)	Box of 200 strips 20 x 70 mm
Copper test paper	907 29	Copper(II) ions (Cu ²⁺)	Box of 200 strips 20 x 70 mm
Cuprotesmo	906 01	Copper ions (Cu, Cu ⁺ , Cu ²⁺)	Box of 40 sheets 40 x 25 mm
Cyantesmo	906 04	Cyanide, hydrocyanic acid (CN⁻, HCN)	Reel of 5 m length and 10 mm width
Dipyridyl paper	907 25	Iron(II) ions (Fe ²⁺)	Box of 200 strips 20 x 70 mm
Fluoride test paper	907 50	Fluoride, hydrofluoric acid (F ⁻ , HF)	Box of 200 strips 20 x 70 mm
Indanthrene yellow paper	907 51	Vat dyes, end-point of conversion	Box of 200 strips 20 x 70 mm
Indipro	907 65	Protein residues	Box of 60 test strips 10 x 95 mm and additional reagents
Iron test paper	907 26	Iron ions (Fe ²⁺ , Fe ³⁺)	Box of 100 strips 20 x 70 mm
Lead acetate paper	907 44	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Reel of 5 m length and 7 mm width
Lead acetate paper	907 45	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Refill pack with 3 reels
Lead acetate paper	907 46	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Booklet of 100 strips 10 x 70 mm
Mercury bromide paper	907 62	Arsenic, arsine (As, AsH ₃)	Box of 200 strips 20 x 70 mm
Nickel test paper	907 30	Nickel(II) ions (Ni ²⁺)	Box of 200 strips 20 x 70 mm
■ Nitratesmo	906 11	Nitrate and nitrite (NO ₃ ⁻ , NO ₂ ⁻)	Reel of 5 m length and 10 mm width

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Detection limit	Shelf life	GHS	Test
10 mg/L Al ³⁺	2 years		Aluminum test paper
10 mg/L NH ₄ +	2 years		Ammonium test paper
5 mg/L Sb ³⁺	2 years		Antimony test paper
1–2 mm water layer	2 years		AQUATEC test strips
0.5 µg arsenic	2 years		Arsenic test paper
60 mg/L Bi ³⁺	2 years		Bismuth test paper
1 mg/L Cl ₂	2 years		Chlortesmo
2 mg/L $\mathrm{Cr}^{3+}/5$ mg/L $\mathrm{CrO_4}^{2-}$	2 years		Chromium test paper
25 mg/L Co ²⁺	2 years		Cobalt test paper
20 mg/L Cu ²⁺	2 years		Copper test paper
0.05 μg Cu on surfaces	2 years		Cuprotesmo
0.2 mg/L HCN	2 years		Cyantesmo
2 mg/L Fe ²⁺	2 years		Dipyridyl paper
20 mg/L F ⁻	2 years		Fluoride test paper
Alkaline sodium dithionite traces	2 years		Indanthrene yellow paper
50 μg BSA (bovine serum albumin)	2 years	-	Indipro
10 mg/L Fe ²⁺ or Fe ³⁺	2 years		Iron test paper
5 mg/L S^{2-}	2 years		Lead acetate paper
5 mg/L S ²⁻	2 years		Lead acetate paper
5 mg/L S ²⁻	2 years		Lead acetate paper
0.5 μg arsenic	2 years		Mercury bromide paper
10 mg/L Ni ²⁺	2 years		Nickel test paper
10 mg/L NO ₃ -/5 mg/L NO ₂ -	2 years		Nitratesmo

Test papers without color chart

Test	REF	Determination of	Presentation
Oil test paper	907 60	Oil in water and soil	Box of 100 strips 20 x 70 mm
Peroxtesmo KM	906 05	Blood traces (peroxidase)	Box of 25 test papers 15 x 30 mm
Peroxtesmo KO	906 06	Peroxidase in food	Box of 100 test papers 15 x 15 mm
Peroxtesmo MI	906 27	Peroxidase in milk	Box of 100 test papers 15 x 15 mm
Phosphatesmo KM	906 07	Sperm, acid phosphatase	Box of 25 test papers 15 x 30 mm
Phosphatesmo MI	906 12	Alkaline phosphatase in milk	Box of 50 test strips 10 x 95 mm
■ Plumbtesmo	906 02	Lead, lead ions (Pb, Pb ²⁺)	Box of 40 sheets 40 x 25 mm
Potassium iodate starch paper	907 53	Nitrous acid, sulfur dioxide	Reel of 5 m length and 7 mm width
Potassium iodide starch paper	907 54	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Reel of 5 m length and 7 mm width
Potassium iodide starch paper	907 55	Nitrite ions, nitrous acid, ozone, chlorine (NO2-, HNO2, O3, Cl2)	Refill pack with 3 reels
Potassium iodide starch paper	907 56	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Booklet of 100 strips 10 x 70 mm
Potassium iodide starch paper	907 58	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Box of 200 strips 20 x 70 mm
Potassium test paper	907 27	Potassium ions (K ⁺)	Box of 200 strips 20 x 70 mm
Silver test paper	907 32	Silver ions (Ag ⁺)	Box of 200 strips 20 x 70 mm
Sulfide test paper	907 61	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Reel of 5 m length and 7 mm width
Sulfite test paper	907 63	Hydrogen sulfide, sulfite ions (SO ₂ , SO ₃ ²⁻)	Box of 100 strips 20 x 70 mm
Tumeric paper	907 47	Boric acid, borates (H ₃ BO ₃ , BO ₃ ³⁻)	Box of 200 strips 20 x 70 mm
Udder test paper	907 48	Mastitis	20 sheets 90 x 140 mm in PE bag
■ Waterfinder test paper	906 30	Water in organic solutions	Reel of 7 m length and 14 mm width
■ Watesmo	906 09	Water in organic solutions	Reel of 5 m length and 10 mm width
■ Wator	906 10	Water distribution in butter	Box of 50 sheets 78 x 40 mm
Zirconium test paper	907 21	Zirconium ions (Zr ⁴⁺)	Box of 100 strips 20 x 70 mm

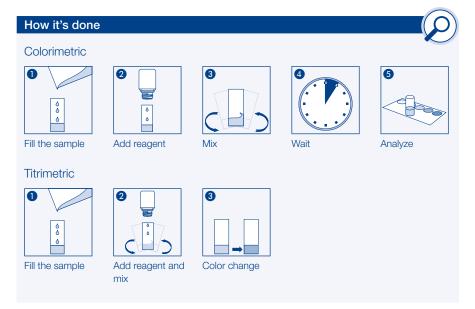


Test papers without color chart

De	etection limit	Shelf life	GHS	Test
	50 mg/L petroleum ether / 10 mg/L gasoline (high ctane) / 5 mg/L fuel oil / 1 mg/L lubricating oil	3 years		Oil test paper
Blo	ood traces	1.5 years		Peroxtesmo KM
Pe	eroxidase traces	2.5 years		Peroxtesmo KO
39	% raw milk in UHT milk	1 year		Peroxtesmo MI
Sp	oerm traces	1.5 years		Phosphatesmo KM
	5 % raw milk in pasteurized milk/300 U/L alkaline nosphatase in UHT milk	1 year		Phosphatesmo MI
5 ו	mg/L Pb ²⁺	15 month		Plumbtesmo
5 1	mg/L SO ₂	2 years		Potassium iodate starch pape
1 :	mg/L NO_2^- /1 mg/L Cl_2	2 years		Potassium iodide starch pape
1 :	$mg/L NO_2^-/1 mg/L Ol_2$	2 years		Potassium iodide starch pape
1 :	mg/L NO ₂ -/1 mg/L Cl ₂	2 years		Potassium iodide starch pape
1 :	mg/L NO ₂ ⁻ /1 mg/L Cl ₂	2 years		Potassium iodide starch pape
25	50 mg/L K ⁺	2 years		Potassium test paper
20) mg/L Ag ⁺	2 years		Silver test paper
5 1	mg/L S ²⁻	2 years		Sulfide test paper
10) mg/L Na ₂ SO ₃	2 years		Sulfite test paper
20) mg/L B / 100 mg/L $\rm H_3BO_3$	2 years		Tumeric paper
Ma	astitis traces	2 years		Udder test paper
Tra	aces of water	2 years		Waterfinder test paper
Tra	aces of water	2 years		Watesmo
Tra	aces of water	2 years		Wator
20) mg/L Zr ⁴⁺	2 years		Zirconium test paper

Visual test kits

VISOCOLOR®	
VISOCOLOR® alpha	74
VISOCOLOR® ECO	76
VISOCOLOR® HE	80
VISOCOLOR® accessories	82


pH 4.0 - 9.0 5.0 7.5 8.0 8.5 visocolor alpha H_{T} O △ °d MACHEREY-NAGEL

VISOCOLOR® alpha

Colorimetric and titrimetric test kits

VISOCOLOR® alpha is the most simple version of colorimetric and titrimetric test kits. These tests are suitable for visual evaluation only and are very convenient in performance, because of the used multicomponent reagents. Therefore, the test kits are limited in precision and accuracy but represent an inexpensive method for screening tests of non-turbid and uncolored water samples. The reagent bottles are packed in practical blister packs. The color comparison chart for colorimetric evaluations, as well as the test instructions, are provided on the cardboard back, which is also used for opening and closing of the package.

Ordering information

Test	REF	Measuring range	Number of tests	Shelf life	Method
■ Ammonium	935 012	$0\cdot0.2\cdot0.5\cdot1\cdot2\cdot3$ mg/L NH ₄ $^+$	50	1.5 years	Indophenol
■ Carbonate hardness	935 016	1 drop equals 1.25 °e	100	1.5 years	Mixed indicator
■ Chlorine, free	935 019	0.25 · 0.5 · 1.0 · 1.5 · 2.0 mg/L Cl ₂	150	1.5 years	DPD
■ Nitrate	935 065	$2\cdot8\cdot15\cdot30\cdot50$ mg/L NO $_3^-$	100	1.5 years	Azo dye
■ Nitrite	935 066	0.05 · 0.10 · 0.25 · 0.5 · 1.0 mg/L NO ₂ -	200	1.5 years	Sulfanilic acid / 1-naphthylamine
■ pH 5–9	935 075	pH 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	200	3 years	Mixed indicator
■ Phosphate	935 079	2 · 5 · 10 · 15 · 20 mg/L PO ₄ ³⁻	70	2 years	Molybdenum phosphorous blue
■ Residual hardness	935 080	0.00 · 0.05 · 0.10 · 0.19 · 0.38 °e	200	1 year	Mixed indicator
■ Total hardness	935 042	1 drop equals 1.25 °e	100	1.5 years	Complexometric titration

¹⁾ Please see the instruction leaflet.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

VISOCOLOR® ECO

Colorimetric and titrimetric test kits

VISOCOLOR® ECO presents a product group of colorimetric and titrimetric test kits, which allow even the determination of low limiting values with sufficient accuracy. The high sensitivity and accuracy is accomplished by single reagents which can be dosed precisely and by the possibility to compensate turbidity and color of water samples.

The results are evaluated visually with high-quality color comparison cards, which are adjusted to the original colors of standard solutions. In addition, there is the possibility to evaluate most *VISOCOLOR® ECO* tests also photometrically with the compact photometers PF-3 (see page 118) and PF-12^{Plus} (see page 122). This enables a quantitative evaluation of the test kit.

Business-priced refill packs are available for photometric evaluation as well as for replacement of consumed chemicals.

All VISOCOLOR® ECO test kits are delivered in a practical cardboard box with plastic inlay and easy to understand instruction manual. In addition, pictogram instructions can be downloaded for every test kit on the MACHEREY-NAGEL website.

Colorimetric Fill the sample Add reagent Mix Wait Analyze Titrimetric Add indicator Add titration solution and mix

Good to know

Most VISOCOLOR® ECO tests can also be evaluated photometrically on the compact photometers PF-3 and PF-12^{Plus}.

Ordering information

Test	REF	REF refill	Measuring range (visual)	Measuring range (photometric) 4)	Number of tests
Alkalinity TA	-	931 204	-	0.4-17.5 °e/5-250 mg/L CaCO ₃	100
■ Aluminum	931 006	931 206	0 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Al ³⁺	=	50
■ Ammonium 3	931 008	931 208	$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \text{ mg/L NH}_4^+$	0.1-2.5 mg/L NH ₄ ⁺	50
Ammonium 15	931 010	931 210	$0 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10 \cdot 15 \text{ mg/L NH}_{\scriptscriptstyle 4}{}^{\scriptscriptstyle +}$	0.5-8.0 mg/L NH ₄ +	50
■ Bromine	-	931 211	-	0.10-13.00 mg/L Br ₂	200
■ Calcium	931 012	_	1 drop equals 5 mg/L Ca ²⁺	_	100
Carbonate hardness	931 014	_	1 drop equals 1.25 °e	-	100
■ Chloride	931 018	931 218	1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L CΓ	1–50 mg/L Cl ⁻	90

■ Chlorine + pH see Swimming pool

¹⁾ Please see the instruction leaflet

²⁾ For evaluation with the PF-12/PF-12^{Plus}, a special filter is required.

³⁾ Additionally required with first order: Oxygen sample bottle, REF 915 498.

⁻⁻ Additionally required with first order: Oxygen sample bottle, REF 915 498. ⁴⁾ Measuring range for photometric evaluation with the PF-12^{Plus}. Range on other photometers can be different.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill: Refill pack

Easy

- Chemical analysis without further accessories
- No extensive training necessary
- Color-coded reagents with clear dosing instructions

Safe

- Pictogram test instructions
- Reaction basis according to international standards
- Compensation of turbidity and color

Unique

- High quality test kits
- Business-prized refill packs

			Majer						
Shelf life	Method	4.20	ithing of St	\$ \\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sh Coloif	Zitic Zitingi		/_&*
1 year	Bromophenol blue							 	Alkalinity TA
2 years	Chromazurol S								Aluminum
1.5 years	Indophenol								Ammonium 3
1.5 years	Indophenol								Ammonium 15
2 years	DPD								Bromine
1.5 years	Complexometric titration								Calcium
2 years	Mixed indicator								Carbonate hardness
1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate	•				-		•	Chloride
									Chlorine + pH see Swimming pool

VISOCOLOR® www.mn-net.com MN 77

VISOCOLOR® ECO

Test	REF	REF refill	Measuring range (visual)	Measuring range (photometric) 4)	Number of tests
■ Chlorine 1, free + total	931 035	931 235	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.05-2.00 mg/L Cl ₂	150
free Chlorine 2	931 016	931 216	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.10-2.00 mg/L Cl ₂	150
■ Chlorine 2, free + total	931 015	931 215	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.10-2.00 mg/L Cl ₂	150
■ free Chlorine 6	_	931 219	-	0.05-6.00 mg/L Cl ₂	400
■ Chlorine 6, free + total	_	931 217	-	0.05-6.00 mg/L Cl ₂	200
■ Chlorine dioxide	931 021	931 221	< 0.2 · 0.2 · 0.4 · 0.6 · 0.8 · 1.1 · 1.7 · 2.3 · 3.8 mg/L CIO ₂	0.20-3.80 mg/L CIO ₂	150
■ Chromium(VI)	931 020	931 220	0.02 · 0.05 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L Cr(VI)	0.02-0.50 mg/L Cr(VI)	140
■ Copper	931 037	931 237	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 1.0 · 1.5 mg/L Cu ²⁺	0.1-5.0 mg/L Cu ²⁺	100
Cyanide	931 022	931 222	0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L CN	0.01-0.20 mg/L CN ⁻	100
Cyanuric acid	931 023	931 223	10 · 15 · 20 · 30 · 40 · 60 · 80 · 100 mg/L Cya	10-100 mg/L Cya	100
■ DEHA	931 024	931 224	0 · 0.01 · 0.03 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 mg/L DEHA	-	125
■ Detergents, anionic	931 050	931 250	0.1 · 0.25 · 0.5 · 1.0 · 2.0 · 5.0 mg/L MBAS	-	50
■ Detergents, cationic	931 051	931 251	0 · 1 · 3 · 5 · 10 · 15 · 20 mg/L CTAB	_	50
■ Fluoride	_	931 227	-	0.1–2.0 mg/L F ⁻	150
■ Hydrazine	931 030	931 230	0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 mg/L N ₂ H ₄	0.05-0.40 mg/L N ₂ H ₄	130
■ Iron 1	931 025	931 225	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	0.04-2.00 mg/L Fe	200
■ Iron 2	931 026	931 226	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	0.04-2.00 mg/L Fe	100
■ Manganese	931 038	931 238	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Mn	0.1–5.0 mg/L Mn	70
Nickel	931 040	931 240	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Ni ²⁺	0.04-5.00 mg/L Ni ²⁺	150
■ Nitrate	931 041	931 241	$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{ mg/L NO}_3^-$	4-60 mg/L NO ₃ ⁻	110
■ Nitrite	931 044	931 244	0 · 0.02 · 0.03 · 0.05 · 0.07 · 0.1 · 0.2 · 0.3 · 0.5 · mg/L NO ₂	0.02-0.50 mg/L NO ₂ -	120
Oxygen 3)	931 088	931 288	0 · 1 · 2 · 3 · 4 · 6 · 8 · 10 mg/L O ₂	1–8 mg/L O ₂	50
■ pH 4.0–9.0	931 066	931 266	pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	450
■ pH 6.0–8.2	_	931 270	-	pH 6.1-8.4	150
■ Phosphate	931 084	931 284	0 · 0.2 · 0.3 · 0.5 · 0.7 · 1 · 2 · 3 · 5 mg/L PO ₄ -P	0.2-5.0 mg/L PO ₄ -P	80
Potassium	931 032	931 232	2 · 3 · 4 · 6 · 8 · 10 · 15 mg/L K ⁺	2–25 mg/L K ⁺	60
■ Silica	931 033	931 233	$0 \cdot 0.2 \cdot 0.4 \cdot 0.6 \cdot 1.0 \cdot 1.5 \cdot 2.0 \cdot 2.5 \cdot 3.0 \text{ mg/L SiO}_2$	0.2-3.0 mg/L SiO ₂	80
■ Silica HR 200	_	931 234	-	10-200 mg/L SiO ₂ ²⁾	100
Sulfate	931 092	931 292	25 · 30 · 35 · 40 · 50 · 60 · 70 · 80 · 100 · 120 · 150 · 200 mg/L SO ₄ ²⁻	20-200 mg/L SO ₄ ²⁻	100
■ Sulfide	931 094	931 294	0.1 · 0.2 · 0.3 · 0.4 · 0.5 · 0.6 · 0.7 · 0.8 mg/L S²-	0.05-0.80 mg/L S ²⁻	90
■ Sulfite	931 095	-	1 drop equals 1 mg/L SO ₃ ²⁻	-	60
■ Swimming pool	931 090	931 290	$\begin{aligned} & \text{Chlorine:} < 0.1 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.9 \cdot 1.2 \cdot 2.0 \text{ mg/L Cl}_2 \\ & \text{pH:} \ 6.9 \cdot 7.2 \cdot 7.4 \cdot 7.6 \cdot 7.8 \cdot 8.2 \end{aligned}$	-	150
■ Total hardness	931 029	-	1 drop equals 1.25 °e	-	110
■ Zinc	931 098	931 298	0 · 0 · 5 · 1 · 2 · 3 mg/L Zn ²⁺	0.1–3.0 mg/L Zn ²⁺	120

¹⁾ Please see the instruction leaflet.
2) For evaluation with the PF-12/PF-12^{Plus}, a special filter is required.
3) Additionally required with first order: Oxygen sample bottle, REF 915 498.
4) Measuring range for photometric evaluation with the PF-12^{Plus}. Range on other photometers can be different.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill: Refill pack

VISOCOLOR® ECO

		,		AK'SK				,c			
Shelf life	Method	\$K.XV	\$ 4,5	ok's	\$ A ST	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	di coloif	Regiro Kringsi	Cogo Miss		, A
2 years	DPD										Chlorine 1. free + total
1.5 years	DPD										free Chlorine 2
1.5 years	DPD										Chlorine 2. free + total
2 years	DPD										free Chlorine 6
2 years	DPD										Chlorine 6. free + total
1.5 years	DPD										Chlorine dioxide
1.5 years	Carbazide										Chromium(VI)
2 years	Cuprizone										Copper
1 year	Barbituric acid/pyridine										Cyanide
1.5 years	Triazine (turbidity)										Cyanuric acid
1 year	Redox reaction										DEHA
2 years	Methylene blue										Detergents, anionic
2 years	Bromphenol blue										Detergents, cationic
1.5 years	SPADNS										Fluoride
1 year	4-Dimethylaminobenzaldehyde										Hydrazine
2 years	Triazine										Iron 1
2 years	Triazine										Iron 2
1.5 years	Formaldoxime										Manganese
1.5 years	Dimethylglyoxime										Nickel
1.5 years	Azo dye										Nitrate
1.5 years	Sulfanilic acid / 1-naphthylamine										Nitrite
1 year	Winkler										Oxygen 3)
3 years	Mixed inidicator										pH 4.0–9.0
1.5 years	Mixed indicator										pH 6.0-8.2
3 years	Phosphorous molybdenum blue										Phosphate
3 years	Potassium tetraphenyl borate (turbidity)										Potassium
3 years	Silicomolybdenum blue										Silica
3 years	Silicomolybdenum blue										Silica HR 200
3 years	Barium sulfate (turbidity)	•					•			-	Sulfate
3 years	DPD										Sulfide
1 year	lodometric titration										Sulfite
1.5 years	DPD Mixed indicator						•			•	Swimming pool
1.5 years	Complexometric titration										Total hardness
1 year	Zincon										Zinc

VISOCOLOR®

VISOCOLOR® HE

Colorimetric and titrimetric test kits

VISOCOLOR® HE test kits are highly sensitive colorimetric and titrimetric tests to determine even the lowest limiting values.

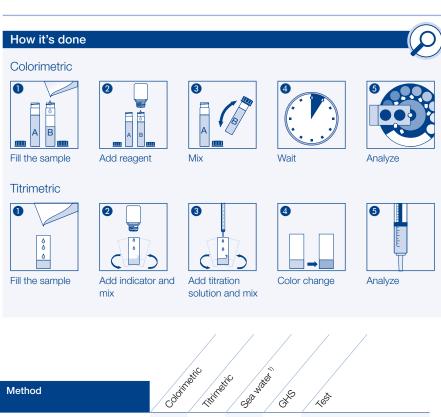
The exact dosing of the single reagents as well as the compensation of turbidity and color are the basis for a highly precise analysis. Maximum sensitivity and accuracy are achieved by the use of longer measuring tubes and larger sample volumes. The sensitivity of VISOCOLOR® HE is 10 to 100 times higher compared to other VISOCOLOR®

The visual evaluation of the colorimetric test kits is done with high-quality color comparison disks, which are adjusted to the original color of standard solutions.

Refill packs are available as replacement for consumed reagents. Every VISOCOLOR® HE test kit is delivered in a robust box with plastic inlay and an easy to understand instruction leaflet.

Good to know

VISOCOLOR® HE test kits reach the highest sensitivity and accuracy in visual analytics.



Ordering information

				A .	
Test	REF	REF refill	Measuring range	Number of tests	Shelf life
Acidity AC 7 (base capacity)	915 006	915 206	0.2–7.2 mmol/L H ⁺ (1 syringe filling)	200	2 years
Alkalinity AL 7 (acid capacity)	915 007	915 207	0.2–7.2 mmol/L OH ⁻ (1 syringe filling)	200	2 years
■ Ammonium	920 006	920 106	$0.0 \cdot 0.02 \cdot 0.04 \cdot 0.07 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.30 \cdot 0.40 \cdot 0.50 \; \text{mg/L NH}_{\text{4}}{}^{\text{+}}$	110	1 year
Calcium CA 20	915 010	915 210	0.6 – 25.0 °e / 0.1 – 3.6 mmol/L Ca^{2+} (1 syringe filling)	200	2 years
■ Carbonate hardness C 20	915 003	915 203	0.6-25.0 °e / 0.2-7.2 mmol/L H ⁺ (1 syringe filling)	200	2 years
■ Chloride CL 500	915 004	915 204	5-500 mg/L Cl ⁻ (1 syringe filling)	300	2 years
■ Chlorine, free + total	920 015	920 115	$0.0 \cdot 0.02 \cdot 0.04 \cdot 0.06 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.30 \cdot 0.40 \cdot 0.60 \text{ mg/L Cl}_2$	160	2 years
■ Copper	920 050	920 150	$0.0 \cdot 0.04 \cdot 0.07 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.25 \cdot 0.30 \cdot 0.40 \cdot 0.50 \text{ mg/L Cu}^{2+}$	150	2 years
■ Cyanide	920 028	920 128	$0.0 \cdot 0.002 \cdot 0.004 \cdot 0.007 \cdot 0.010 \cdot 0.015 \cdot 0.020 \cdot 0.025 \cdot 0.030 \cdot 0.040 \; \text{mg/L CN}^{-}$	50	1 year
■ Iron	920 040	920 140	0.0 · 0.01 · 0.02 · 0.03 · 0.04 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L Fe	300	2 years
■ Manganese	920 055	920 155	$0.0 \cdot 0.03 \cdot 0.06 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.25 \cdot 0.30 \cdot 0.40 \cdot 0.50 \text{ mg/L Mn}$	100	1.5 years
■ Nitrite	920 063	920 163	$0.0 \cdot 0.005 \cdot 0.010 \cdot 0.015 \cdot 0.02 \cdot 0.03 \cdot 0.04 \cdot 0.06 \cdot 0.08 \cdot 0.10 \; \mathrm{mg/L} \; \mathrm{NO_2}^-$	150	2 years
Oxygen SA 10	915 009	915 209	0.2–10.0 mg/L O_2 (1 syringe filling)	100	1.5 years
■ pH 4.0–10.0	920 074	920 174	pH 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	500	2 years
■ Phosphate	920 082	920 182	$0.0 \cdot 0.05 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.8 \cdot 1.0 \; \text{mg/L PO}_{\text{4}}\text{-P}$	300	2 years
■ Phosphate (DEV)	920 080	920 180	$0.0 \cdot 0.01 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.25 \text{ mg/L PO}_{4^-}P$	100	2 years
■ Silica	920 087	920 187	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 mg/L Si	120	2 years
■ Sulfite SU 100	915 008	915 208	2-100 mg/L SO ₃ ²⁻ (1 syringe filling)	100	3 years
■ Total hardness H 2	915 002	915 202	0.06–2.50 $^{\circ}\text{e}$ / 0.01–0.36 mmol/L Ca^{2+} (1 syringe filling)	200	1.5 years
■ Total hardness H 20 F	915 005	915 205	0.6–25.0 °e / 0.1–3.6 mmol/L Ca ²⁺ (1 syringe filling)	200	1.5 years

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill.: Refill pack

VISOCOLOR® HE

	/	atic /	.c. /		
Method	cdoiff	Stir ^C	ic so	is As	\&\\\
Phenolphthalein		•	-	-	Acidity AC 7 (base capacity)
Methyl red		•	•	•	Alkalinity AL 7 (acid capacity)
Indophenol					Ammonium
Complexometric titration					Calcium CA 20
Mixed indicator					Carbonate hardness C 20
Mercurimetric titration					Chloride CL 500
DPD					Chlorine, free + total
Cuprizon					Copper
Barbituric acid/pyridine					Cyanide
Triazine					Iron
Formaldoxime					Manganese
Sulfanilic acid / 1-naphthylamine					Nitrite
Winkler					Oxygen SA 10
Mixed indicator					pH 4.0–10.0
Phosphorous molybdenum blue					Phosphate
Phosphorous molybdenum blue					Phosphate (DEV)
Silico molybdenum blue					Silica
lodometric titration					Sulfite SU 100
Complexometric titration					Total hardness H 2
Complexometric titration					Total hardness H 20 F

VISOCOLOR® accessories

The complete analysis from one source

VISOCOLOR® test kits from MACHEREY-NAGEL are ideally suited for the fast and easy water analysis. Besides the test kits, MACHEREY-NAGEL offers a broad range of accessories for VISOCOLOR® tests.

Ordering information

Description	REF	Content	GHS
■ Measuring glasses for VISOCOLOR® ECO with screw caps	931 151	10 pieces	
Slide comparator for VISOCOLOR® ECO	931 152	2 pieces	
Color comparison disk for VISOCOLOR® ECO (REF end No. see test kit)	931 4	1 piece	
■ Titration test tube with 5-mL-marking	915 499	1 piece	
Sample bottle 30 mL for oxygen determination	915 498	1 piece	
Sample beaker 25 mL	914 498	1 piece	
Sample tube with 10-/20-mL-marking	914 496	1 piece	
Measuring tube 25–200 mg/L Sulfate	914 495	1 piece	
■ Measuring tube 2–15 mg/L Potassium	914 444	1 piece	
Test tubes 16 mm OD	916 80	20 pieces	
Plastic spoon (measuring spoon) black, 85 mm	914 663	10 pieces	
Plastic spoon (measuring spoon) orange, 85 mm	914 664	10 pieces	
Plastic spoon (measuring spoon) black, 70 mm	914 492	10 pieces	
VISOCOLOR® ECO test instructions for photometer PF-12 ^{Plus}	931 503	1 piece	
■ VISOCOLOR® ECO test instructions for photometer PF-12	931 501	1 piece	
■ VISOCOLOR® ECO test instructions for photometer PF-3	934 001	1 piece	
■ VISOCOLOR® ECO test instructions for visual determination	931 502	1 piece	
Additive reagent Z-1 to eliminate copper ions prior determination of total hardness	931 929	30 mL	
Measuring tube for VISOCOLOR® HE with screw cap	920 401	10 pieces	
Comparator block for VISOCOLOR® HE	920 402	1 piece	
Color comparison disk for VISOCOLOR® HE (REF end No. see test kit)	920 3	1 piece	
Spare syringes for VISOCOLOR® HE (REF end No. see test kit)	915 4	2 pieces	
Thermometer -10 °C to +60 °C	914 497	1 piece	

VISOCOLOR® reagent cases Reagent cases for individual solutions

Unlimited possibilities

- Robust cases
- Premium foam inlays
- Individual combination of test papers and test kits
- Available with and without photometer

Photometric tests

NANOCOLOR®

NANOCOLOR® tube tests	86
NANOCOLOR® standard tests	94
NANOCONTROL	98
NANOCOLOR® reagents for sample decomposition	104
NANOCOLOR® accessories	106

Precise rapid tests for photometric water analysis

NANOCOLOR® tube tests for photometric analysis convince by their easy handling and therefore are the first choice for routine, laboratory and process analysis. A maximum in accuracy and precision is granted for the measurement results due to exactly pre-dosed reagents in 16 mm cuvettes and additional reagents. The tests are pre-programmed in MACHEREY-NAGEL photometers and selected automatically via a barcode on the cuvette. This perfect interaction of instruments and tests lets the user experience a high measurement safety, saving time and working cost-efficiently.

Ideally packed

All NANOCOLOR® tube tests are delivered in stable boxes with color coded labels, giving all relevant information about the test at one glance. The boxes provide a perfect protection from sunlight and convenient withdrawal of test tubes and reagents. LOT-specific information are available by scanning of the 2D barcode on the back of the box (see page 162). The colored pictograms in the lid, which are of special value for our customers, provide intuitive instructions on the test procedure also for inexperienced users.

The perfect test for every user

The user's choice of the correct test is the first step towards a successful analysis. MACHEREY-NAGEL offers various test kits with different measurement ranges for all typical parameters relevant in water and waste water analysis. It is recommended to choose a test kit, where the expected and measured measurement value is within the 20-80% range of the measuring range of the used test. Here, the safety of the measurement result is at its optimum. The operator gets reliable results and safety for the reporting of his results to supervisors and towards authorities.

Good to know

Certificates of analysis for NANOCOLOR® tube tests can be downloaded fast and convenient via www.mn-net.com/ certificate.

Good to know

Via the 2D barcode on the back of the packages, LOT-specific information can be read easily. For further information about the required NANOCOLOR® App see page 160.

Easy

- Colored pictograms as step-by-step instruction
- Big cuvettes for easy pipetting
- Barcoded cuvettes for automatic test selection

- Convenient withdrawal of tubes from the box
- No contact with chemicals
- Reactions based on internationally accepted standard methods

Reliable

- Precisely pre-dosed reagents
- Adequate test for every application
- Constant high quality from batch to batch

ISO conform COD tests

MACHEREY-NAGEL offers a complete analytical system with seven tube tests for an ISO conform COD analysis. The ISO 15705 describes the use of tube tests that are suitable for photometric evaluation and is a standardized and internationally accepted method for sewage and waste water analysis. This norm explicitly suggests to use commercial test kits.

Time-saving and reliable analysis of total nitrogen

The sum-parameter total nitrogen is of high relevance in water and waste water analysis. It gives valuable information about the grade of contaminations with e.g. ammonia, nitrite or nitrate. NANOCOLOR® total nitrogen tests impress with safe and reproducible results as well as fast and easy handling. Precisely pre-dosed reagents allow the performance of the test in only a few steps. A separate cuvette for every sample decomposition saves time is and minimizes errors from cross-contaminations.

Ordering information

Test		REF	Measuring range NANOC	OLOR® VIS II	Number of tests	Shelf life	Method
Aluminum 07 ²⁾		985 098	0.02-0.70 mg/L Al ³⁺		19	1 year	Eriochrome® Cyanine R
Ammonium 3		985 003	0.04-2.30 mg/L NH ₄ -N	0.05-3.00 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 10		985 004	0.2-8.0 mg/L NH ₄ -N	0.2-10.0 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 50		985 005	1–40 mg/L NH ₄ -N	1–50 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 100		985 008	4–80 mg/L NH ₄ -N	5–100 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 200		985 006	30-160 mg/L NH ₄ -N	40-200 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 2000		985 002	300-1600 mg/L NH ₄ -N	400-2000 mg/L NH ₄ +	20	1 year	Indophenol
AOX 3		985 007	0.1-3.0 mg/L AOX	0.01-0.30 mg/L AOX	20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
BOD ₅ (in Winkler bo	ottles)	985 822	2–3000 mg/L O ₂		25–50	2 years	Winkler
■ BOD ₅ -TT		985 825	0.5–3000 mg/L O ₂		22	2 years	Winkler
Cadmium 2		985 014	0.05-2.00 mg/L Cd ²⁺		10–19	1 year	Cadion
Carbonate hardnes	s 15	985 015	1.25-18.75 °e	0.4-5.4 mmol/L H ⁺	20	1 year	Bromphenol blue
Chloride 50		985 021	0.5–50.0 mg/L Cl ⁻		20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
Chloride 200		985 019	5-200 mg/L Cl ⁻	0.10-1.00 g/L Cl ⁻	20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
Chlorine / Ozone 2		985 017	0.05-2.50 mg/L Cl ₂	0.05–2.00 mg/L O ₃	20	1 year	DPD
Chlorine dioxide 5		985 018	0.15-5.00 mg/L CIO ₂		20	1 year	DPD
Chromate 5		985 024	0.05–2.00 mg/L Cr(VI) 0.005–0.500 mg/L Cr(VI) $^{1)}$	0.1–4.0 mg/L CrO ₄ ^{2–} 0.01–1.00 mg/L CrO ₄ ^{2–1)}	20	2 years	Carbazide
total Chromium 2		985 059	0.05–2.00 mg/L Cr 0.005–0.500 mg/L Cr ¹⁾		20	2 years	Carbazide
COD 40		985 027	2-40 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 60	ISO 15705	985 022	5–60 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 160	ISO 15705	985 026	15–160 mg/L O ₂		20	1 year	Potassium dichromate
COD 160 Hg-free		963 026	15–160 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 300		985 033	50–300 mg/L O ₂		20	1 year	Potassium dichromate
COD 600	ISO 15705	985 030	50–600 mg/L O ₂		20	1 year	Potassium dichromate
COD 1500	ISO 15705	985 029	100-1500 mg/L O ₂		20	1 year	Potassium dichromate
COD 1500 Hg-free		963 029	100–1500 mg/L O ₂		20	1 year	Potassium dichromate
COD 4000		985 011	400-4000 mg/L O ₂		20	1 year	Potassium dichromate
COD 10000		985 023	1.00-10.00 g/L O ₂		20	1 year	Potassium dichromate
COD 15000	ISO 15705	985 028	1.0–15.0 g/L O ₂		20	1 year	Potassium dichromate
COD 60000		985 012	5.0-60.0 g/L O ₂		20	1 year	Potassium dichromate
COD LR 150	ISO 15705	985 036	3–150 mg/L O ₂		20	1 year	Potassium dichromate
COD HR 1500	ISO 15705	985 038	20-1500 mg/L O ₂		20	1 year	Potassium dichromate
org. Complexing ag	ents 10	985 052	0.5–10.0 mg/L I _{BiC}		10–19	1 year	Bismut xylenol orange
Copper 5		985 053	0.10-7.00 mg/L Cu ²⁺		20	2 years	Cuprizone

On other photometers than the NANOCOLOR® VIS II measurement ranges and wavelengths can be different.

1) A more sensitive measuring range is possible by using semi-micro cuvettes 50 mm (REF 919 50).

2) Decomposition only possible in microwave.

³⁾ Special filter can be necessary for filter photometers.
⁴⁾ Without barcode.

^{**}Please see the instruction realier.

10 This test can be performed without a NANOCOLOR® reagent set. Determination only with NANOCOLOR® spectrophotometers and the PF-12**E.

11 GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

/	to O				Make At 25 St					, XO		\$	
Speria	200	4x, 2x, 2x, 2x, 2x, 2x, 2x, 2x, 2x, 2x, 2	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	4,3	phylines of ski	\$ \\ \delta \$\delta \text{\$\delta \text{\$\d \text{\$\delta \text{\$\delta \text{\$\delta \text{\$\delta \text{\$\	\$ \\ \langle \(\frac{\partial \character}{\partial \character} \)	johl NanOt	A Kano	Mega, Ctoop	St South	CHO CHO	Ž
				/			/						Aluminum 07 ²⁾
													Ammonium 3
													Ammonium 10
													Ammonium 50
													Ammonium 100
													Ammonium 200
													Ammonium 2000
													AOX 3
•	-	•											BOD ₅ (in Winkler bottles)
													BOD₅-TT
													Cadmium 2
													Carbonat hardness 15
	•												Chloride 50
-	•	-									-	•	Chloride 200
													Chlorine / Ozone 2
													Chlorine dioxide 5
•	•	•							•		•		Chromate 5
	•	-										-	total Chromium 2
	•	-	-									-	COD 40
	-	-	-									-	COD 60
													COD 160
•	•	•										•	COD 160 Hg-free
													COD 300
													COD 600
													COD 1500
													COD 1500 Hg-free
													COD 4000
													COD 10000
													COD 15000
													COD 60000
													COD LR 150
													COD HR 1500
	•												org. Complexing agents 10
													Copper 5

Test	REF	Measuring range NANOC	OLOR® VIS II	Number of tests	Shelf life	Method
Cyanide 08	985 031	0.02-0.80 mg/L CN ⁻ 0.005-0.100 mg/L CN ⁻¹⁾		20	1 year	Barbituric acid/Pyridine
■ DEHA 1 (Diethylhydroxylamine)	985 035	0.05-1.00 mg/L DEHA		20	1 year	Redox reaction
Ethanol 1000	985 838	0.10-1.00 g/L EtOH	0.013-0.130 Vol. % EtOH	23	2 years (< 0 °C)	Alcoholoxidase / Peroxidase
Fluoride 2	985 040	0.1–2.0 mg/L F ⁻		20	1.5 years	Lanthanum-Alizarine complexon
Formaldehyde 8	985 041	0.1-8.0 mg/L HCHO		20	2 years	Chromotropic acid
Formaldehyde 10 ³⁾	985 046	0.20–10.00 mg/L HCHO 0.02–1.00 mg/L HCHO ¹⁾		20	2 years	Acetylacetone
■ Hardness Ca / Mg	985 044	1.25–25.00 °e 0.2–3.6 mmol/L	5–50 mg/L Mg ²⁺ 10–100 mg/L Ca ²⁺	20	1.5 years	Phthalein purple
■ Hardness 20	985 043	1.25–25.00 °e 0.2–3.6 mmol/L	5–50 mg/L Mg ²⁺ 10–100 mg/L Ca ²⁺	20	1.5 years	Phthalein purple
HC 300 (Hydrocarbons)	985 057	0.5-5.6 mg/L HC	30–300 mg/kg HC	20	1 year	Potassium dichromate
■ Iron 3	985 037	0.10–3.00 mg/L Fe 0.02–1.00 mg/L Fe ¹⁾		20	1 year	Diphenylpyridyltriazine
Lead 5	985 009	0.10-5.00 mg/L Pb ²⁺		20	1 year	4-(2-Pyridyl-(2)-azo)-resorcine (PAR)
■ Manganese 10	985 058	0.1–10.0 mg/L Mn 0.02–2.00 mg/L Mn ¹⁾		20	1.5 years	Formaldoxime
■ Methanol 15	985 859	0.2-15.0 mg/L MeOH		23	1 year (< 0 °C)	Alcoholoxidase / Peroxidase
Molybdenum 40	985 056	1.0-40.0 mg/L Mo(VI)	1.6–65.0 mg/L MoO ₄ ²⁻	20	2 years	Thioglycolic acid
■ Nickel 4	985 071	0.10–7.00 mg/L Ni ²⁺ 0.02–1.00 mg/L Ni ^{2+ 1)}		20	2 years	Dimethylglyoxime
■ Nitrate 8	985 065	$0.30-8.00 \ \mathrm{mg/L} \ \mathrm{NO_3-N}$	$1.3-35.0~{\rm mg/L~NO_3}^-$	20	2 years	2,6-Dimethylphenol
■ Nitrate 50	985 064	0.3–22.0 mg/L NO ₃ -N	2-100 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
■ Nitrate 250	985 066	4–60 mg/L NO ₃ -N	20-250 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
Nitrite 2	985 068	0.003-0.460 mg/L NO ₂ -N	0.02-1.50 mg/L NO ₂ -	20	1 year	Sulfanilic acid / 1-Naphthtylamine
■ Nitrite 4	985 069	0.1–4.0 mg/L NO ₂ -N	0.3–13.0 mg/L NO ₂ ⁻	20	1.5 years	Sulfanilic acid/ 1-Naphthylamine
■ total Nitrogen TN _b 22	985 083	0.5–22.0 mg/L N		20	1 year	2,6-Dimethylphenol
■ total Nitrogen TN _b 60	985 092	3–60 mg/L N		20	1 year	2,6-Dimethylphenol
■ total Nitrogen TN _b 220	985 088	5–220 mg/L N		20	1 year	2,6-Dimethylphenol
Organic acids 3000	985 050	30-3000 mg/L CH ₃ COOH	0.5–50.0 mmol/L CH ₃ COOH	20	1.5 years	Ethylenglycole/ Iron(III)-lons
Oxygen 12	985 082	0.5–12.0 mg/L O ₂		22	2 years	Winkler
Peroxide 2	985 871	0.03-2.00 mg/L H ₂ O ₂		10–19	1 year (2–8 °C)	Peroxidase
■ pH 6.5–8.2 ⁴⁾	918 72	pH 6.5–8.2		100	1.5 years	Phenol red
Phenolic Index 5	985 074	0.2-5.0 mg/L Phenol		20	1.5 years	4-Aminoantipyrine
ortho- and total Phosphate 1	985 076	0.05–1.50 mg/L P 0.010–0.800 mg/L P ¹⁾	0.2–5.0 mg/L PO ₄ ^{3–} 0.03–2.50 mg/L PO ₄ ^{3–1)}	20	1 year	Phosphomolybdenum blue

On other photometers than the NANOCOLOR® VIS II measurement ranges and wavelengths can be different.

¹⁾ A more sensitive measuring range is possible by using semi-micro cuvettes 50 mm (REF 919 50).
²⁾ Decomposition only possible in microwave.

Special filter can be necessary for filter photometers.
 Without barcode.
 Please see the instruction leaflet.

Triesas see the instruction realier.

This test can be performed without a NANOCOLOR® reagent set. Determination only with NANOCOLOR® spectrophotometers and the PF-12^{Plus}.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

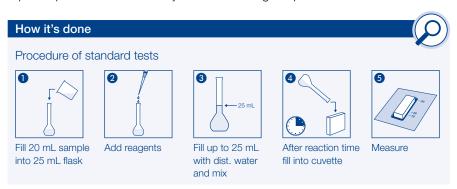
	/	on the second				Akis the Aki							6	
	SOST	1500 00	4. N	\$ 24.30	\$4,30	ok 3 th	\$ Style	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Soll ManOt	A NanOt	Clack of	Si Co	GY,S	ĮŠ.
4					,		,	,	/	,				Cyanide 08
														DEHA 1 (Diethylhydroxylamine)
														Ethanol 1000
														Fluoride 2
														Formaldehyde 8
			•											Formaldehyde 10 ³⁾
	-		•									-		Hardness Ca/Mg
	-	•	•									-		Hardness 20
														HC 300 (Hydrocarbons)
										•	•		•	Iron 3
	•	•	•								•		•	Lead 5
	•	•	•										-	Manganese 10
	•	•	•										•	Methanol 15
														Molybdenum 40
	•									•	•			Nickel 4
		-												Nitrate 8
														Nitrate 50
														Nitrate 250
		•	•										•	Nitrite 2
	-	•	•									-		Nitrite 4
														total Nitrogen TN _b 22
														total Nitrogen TN _b 60
	•													total Nitrogen TN _b 220
	•	•	•									-	-	Organic acids 3000
														Oxygen 12
	-		•											Peroxide 2
	-													pH 6.5–8.2 ⁴⁾
	-													Phenolic index 5
	•	•	•							-			-	ortho- and total Phosphate 1

Test	REF	Measuring range NANO	COLOR® VIS II	Number of tests	Shelf life	Method
ortho- and total Phosphate 5	985 081	0.20-5.00 mg/L P	0.5-15.0 mg/L PO ₄ 3-	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 15	985 080	0.30-15.00 mg/L P	1.0-45.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 45	985 055	5.0-50.0 mg/L P	15-150 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 50	985 079	10.0-50.0 mg/L P	30-150 mg/L PO ₄ ³⁻	19	3 years	Vanadate molybdate
ortho- and total Phosphate LR 1	985 095	0.05-0.50 mg/L P	0.2-1.5 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
■ POC 200	985 070	20-200 mg/L POC	2-40 mg/L KWI	20	1.5 years	Turbidity
Potassium 50	985 045	2–50 mg/L K ⁺		20	2 years	Potassium tetraphenylborate (Turbidity)
Residual hardness 1	985 084	0.03-1.25 °e	0.004-0.180 mmol/L	20	1 year	Phthalein purple
■ Silver 3	985 049	0.20-3.00 mg/L Ag ⁺	0.08-0.50 mg/L Ag ^{+ 1)}	20	1.5 years	Indicator
■ Starch 100	985 085	5-100 mg/L starch		19	1 year	lodine-starch reaction
Sulfate 200	985 086	10-200 mg/L SO ₄ ²⁻		20	3 years	Bariumsulfate (Turbidity)
Sulfate 1000	985 087	200-1000 mg/L SO ₄ ²⁻		20	3 years	Bariumsulfate (Turbidity)
Sulfate LR 200	985 062	20-200 mg/L SO ₄ ²⁻		20	3 years	Bariumsulfate (Turbidity)
Sulfide 3	985 073	0.05-3.00 mg/L S ²⁻		20	3 years	Methylene blue
Sulfite 10	985 089	0.2-10.0 mg/L SO ₃ ²⁻	0.05-2.40 mg/L SO ₃ ²⁻¹⁾	20	1 year	Thiobenzoic acid derivative
Sulfite 100	985 090	5-100 mg/L SO ₃ ²⁻		19	1 year	Potassium iodate / -iodide
■ Anionic surfactants 4	985 032	0.20-4.00 mg/L MBAS	0.20-3.500 mg/L SDS	20	2 years	Methylene blue
Cationic surfactants 4	985 034	0.20-4.00 mg/L CTAB		20	2 years	Disulfin blue
Nonionic surfactants 15	985 047	0.3–15.0 mg/L Triton [®] X-100		20	2 years	TBPE
■ Thiocyanate 50	985 091	0.5-50.0 mg/L SCN ⁻		20	2 years	Iron(III)-thiocyanate
■ Tin 3 ³⁾	985 097	0.10-3.00 mg/L Sn		18	1 year	9-Phenyl-3-fluoron
■ TOC 25	985 093	2.0-25.0 mg/L C		10	1 year	Indicator
■ TOC 30	985 075	2.0–30.0 mg/L C		20	1 year (2-8 °C)	Indicator
■ TOC 60	985 094	10-60 mg/L C		10	1 year	Indicator
■ TOC 300	985 078	20-300 mg/L C		20	1 year (2-8 °C)	Indicator
■ TOC 600	985 099	40-600 mg/L C		10	1 year	Indicator
■ TTC / Sludge activity	985 890	5–150 μg TPF	0.050–2.300 A	20	2 years (2-8 °C)	2,3,5-Triphenyltetrazoliumchloride (TTC)
■ Turbidity ⁶⁾	Test 9-06	0.1–1000 NTU		=	_	Turbidity
■ Zinc 4	985 096	0.10-4.00 mg/L Zn ²⁺		20	1 year	Zincon
Zirconium 100	985 001	5–100 mg/L Zr		20	3 years	Indicator

On other photometers than the $NANOCOLOR^{\otimes}$ VIS II measurement ranges and wavelengths can be different.

¹⁰ Notice productives that the NANOCCION VS in measurement ranges and wavelengths can be a not wavelengths can be a possible by using semi-micro cuvettes 50 mm (REF 919 50).
10 Decomposition only possible in microwave.
11 Special filter can be necessary for filter photometers.
12 Without barcode.
13 Please see the instruction leaflet.
14 This tend has professed without a NANOCCION research set. Determination only with NANOCCION secret set.

Triesds see the instruction realist.


This test can be performed without a NANOCOLOR® reagent set. Determination only with NANOCOLOR® spectrophotometers and the PF-12^{Plus}.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

cspecific cspeci	Andria de la companya		\$ \delta \text{2}	okings still	\$4.300		<u> </u>	<u> </u>	, Š	. /	3, /	′ /
•				 / ` ,	/ & /	AK'SS	NanOX E	, Way Ot	Ctock st	S N	SKS SKS	, Š
-												ortho- and total Phosphate 5
												ortho- and total Phosphate 15
												ortho- and total Phosphate 45
												ortho- and total Phosphate 50
												ortho- and total Phosphate LR 1
												POC 200
•	•	-				•				-		Potassium 50
												Residual hardness 1
												Silver 3
												Starch 100
												Sulfate 200
												Sulfate 1000
												Sulfate LR 200
												Sulfide 3
•	•	-								-	•	Sulfite 10
												Sulfite 100
												Anionic surfactants 4
												Cationic surfactants 4
•	•	•										Nonionic surfactants 15
												Thiocyanate 50
												Tin 3 ³⁾
												TOC 25
•	•	•										TOC 30
												TOC 60
•	•	•										TOC 300
												TOC 600
•	•	•									•	TTC / Sludge activity
•		•								•		Turbidity ⁶⁾
	•							•		•		Zinc 4
												Zirconium 100

High sensitivity for photometric water analysis

NANOCOLOR® standard tests are convenient reagent kits for photometric analysis. With ready-to-use reagents up to 500 determinations are possible with only one test kit, resulting in low costs per determination for the user. Even very low limits can be evaluated precisely, due to high sample volumes and the measurement in 50 mm cuvettes. An enhancement of selectivity is possible for various parameters by extraction, where potentially interfering substances remain in the aqueous phase. The colored complex with the substance of interest is extracted with an organic solvent from the aqueous phase and is then analyzed within the organic phase.

Good to know

NANOCOLOR® standard tests offer maximum sensitivity and accuracy in photometric analysis.

Good to know

For further information on NANOCOLOR® photometers for the evaluation of NANOCOLOR® standard tests see page 12.

Ordering information

Test	REF	Measuring range NANOC	OLOR® VIS II	Number of tests 1)	Shelf life	Method
Aluminum ²⁾	918 02	0.01–1.00 mg/L Al ³⁺		250	2 years	Eriochrome® Cyanine R
Ammonium	918 05	0.01-2.0 mg/L NH ₄ -N	0.01-2.5 mg/L NH ₄ +	100	1 year	Indophenol
Cadmium 3)	918 131	0.002-0.50 mg/L Cd ²⁺		25	1.5 years	Dithizone
Chloride	918 20	0.2–125 mg/L Cl ⁻		250	1 year	Mercury(II)-thiocyanate / iron(III)-nitrate
Chlorine	918 16	0.02-10.0 mg/L Cl ₂		250	3 years	DPD
Chlorine dioxide	918 163	0.04-4.00 mg/L ClO ₂		50	1.5 years	DPD
Chromate	918 25	0.01-3.0 mg/L Cr(VI)	0.01-6.0 mg/L CrO ₄ ²⁻	250	2 years	Carbazide
Cobalt	918 51	0.002-0.70 mg/L Co ²⁺		250	2 years	5-CI-PADAB
Color (Hazen/DIN) 4)	Test 1-39	5-500 mg/L Pt (Hazen)	0.2-20.0 ¹ /m	-	-	Hazen
Copper	918 53	0.01–10.0 mg/L Cu ²⁺		250	2 years	Cuprizone
Cyanide	918 30	0.001-0.50 mg/L CN ⁻		250	1 year	Barbituric acid/pyridine
Detergents, anionic	918 32	0.02-5.0 mg/L MBAS		40	3 years	Methylene blue
Detergents, cationic	918 34	0.05-5.0 mg/L CTAB		100	3 years	Bromphenol blue
■ Fluoride	918 142	0.05–2.00 mg/L F ⁻		500	1.5 years	SPADNS
Hydrazine	918 44	0.002-1.50 mg/L N ₂ H ₄		250	1 year	4-(Dimethylamino)- benzaldehyde
■ Iron	918 36	0.01–15.0 mg/L Fe		250	3 years	1,10-Phenanthroline
Lead 3)	918 101	0.005-1.00 mg/L Pb ²⁺		50	1.5 years	Dithizone
Manganese	918 60	0.01–10.0 mg/L Mn		250	3 years	Formaldoxime
Nickel	918 62	0.01–10.0 mg/L Ni ²⁺		250	2 years	Dimethylglyoxime
■ Nitrate	918 65	0.1–30.0 mg/L NO ₃ -N	0.5-140 mg/L NO ₃ -	100	2 years	2,6-Dimethylphenol
■ Nitrate Z	918 63	0.02-1.0 mg/L NO ₃ -N	0.1–5.0 mg/L NO ₃ ⁻	500	1.5 years	Sulfanilic acid / 1-Naphthylamine
Nitrite	918 67	0.002-0.30 mg/L NO ₂ -N	0.005-1.00 mg/L NO ₂ -	250	1.5 years	Sulfanilic acid / 1-Naphthylamine
Ozone	918 85	0.01-1.50 mg/L O ₃		200	1 year (2-8 °C)	Indigotrisulfonate
Phenol	918 75	0.01-7.0 mg/L Phenol		500	3 years	4-Nitroaniline
ortho-Phosphate	918 77	0.04-6.5 mg/L PO ₄ -P	0.1-20.0 mg/L PO ₄ 3-	500	3 years	Phospho molybdenum blue
ortho-Phosphate	918 78	0.2–17 mg/L PO ₄ -P	0.5–50 mg/L PO ₄ ^{3–}	500	3 years	Vanadate molybdate
SAC ^{4) 7)}	Test 3-01	0.1-150.0 ¹ /m		_	-	-
■ Silica	918 48	0.01–10.0 mg/L Si 0.002–0.1 mg/L Si ⁵⁾	0.02–10.0 mg/L SiO ₂ 0.005–0.200 mg/L SiO ₂ ⁵⁾	250	3 years	Silicomolybdenum blue
Sulfide	918 88	0.01-3.0 mg/L S ²⁻		250	3 years	Methylene blue
Turbidity (Formazine/DIN) 4)	Test 1-92	1-100 TE/F (= FAU)	0.5–40.0 ¹ /m	-	=	Turbidity
Zinc	918 95	0.02-3.0 mg/L Zn ²⁺		250	3 years	Zincon

¹⁾ Maximal number of tests. The number of tests depends on the used sample volume.
2) Decomposition in micro wave is possible.

Organic phase tetrachloro ethylene p.a. or tetrachloro methane is needed additionally.

No NANOCOLOR® test is necessary for this determination.

⁵⁾ Highly sensitive measurement.

[®] Please see the instruction leaflet.

This test can only be performed with NANOCOLOR® W/vis II.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

general designation of the property of the pro	/	notomated		dune	* Oroco dire			W. W		6	
Ammonium Ammonium Cadmium Chlorinde Chlorine Chlorine Chlorine dioxide Chromate Cobalt Color (HazarvDlN) Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Icad Manganese Nickel Nitrate Nitrate Nitrate Phenol ortho-Phosphate	GQ CT	300	Segrice.	and sindiff	HanOt	HanOt	Shide	Clogh of	Solvis	is, City	Į.
Cadmium ⁶⁾ Chloride Chlorine Chlorine Chlorine Chlorine dioxide Chromate Cobalt Color (Hazen/DIN) ^{6]} Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Inon Lead ^{3]} Manganese Nickel Nitrate Nitrate Nitrate Nitrate Copper Cyanide Detergents, cationic Fluoride Hydrazine Inon Lead ^{3]} Manganese Nickel Nitrate Nitrate Nitrate Silica Sulfide Turbicity (Formazine/DIN) ^{6]}											
Chloride Chlorine Chlorine Chlorine Chlorine dioxide Chromate Cobat Color (Hazen/DIN) ⁽¹⁾ Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Inco Inco Inco Inco Inco Inco Inco Inco											Ammonium
Chlorine Chlorine Chlorine dioxide Chromate Chormate Chormate Chormate Chormate Chormate Chormate Chormate Chormate Chormate Cobart Coppor Coppor Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ⁹ Manganese Nickel Nitrate Nitrate Nitrate Nitrate Nitrate Sac ⁴ ⁹ Phenol ortho-Phosphate ortho-Phosphate SAC ⁴ ⁹ Silica											Cadmium 3)
Chlorine dioxide Chromate Cobalt Color (Hazen/DIN) ⁻⁰ Copper Cyanide Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ³¹ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Copner Cyanide Turbicity Copper Cyanide Copper Cyanide Detergents, cationic Fluoride Copner Cyanide Copper Cyanide Copper Cyanide Copper Cyanide Copper Cop	•	•	-							-	Chloride
Chromate Cobalt Color (Hazer/DIN) ⁴ Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ³⁰ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrate SAC ⁴⁰ ⁷ Silica Sulfide Turbidity (Formazine/DIN) ⁴											Chlorine
Cobalt Color (Hazen/DIN) ⁴ Copper Cyanide Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ³⁰ Manganese Nickel Nitrate Nitrate Z Nitrate Z Silica Silica Sulfide Turbidity (Formazine/DIN) ⁴											Chlorine dioxide
Color (Hazen/DIN) 4) Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead 4) Manganese Nickel Nitrate Nitrate Z Nitrite Cyanide Hydrazine Iron Lead 5) Manganese Nickel Nitrate Nitrate Z Sac 4 7) Silica Sulfide Turbicity (Formazine/DIN) 4)											Chromate
Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ⁽³⁾ Manganese Nickel Nitrate Nitrate Z Nitrite Cyzone Phenol Ortho-Phosphate Ortho-Phosphate SAC ^(4) 7) Silica Sulfide Turbiclity (Formazine/DIN) ⁽⁴⁾											Cobalt
Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead 3 Manganese Nickel Nitrate Nitrate Z Nitrate Z Nitrite SAC 4 7) Silica Sulfide Turbidity (Formazine/DIN) 4)											Color (Hazen/DIN) 4)
Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron Lead ³⁾ Manganese Nickel Nitrate Nitrate Z Nitrate Z Nitrite SAC ⁴⁾ ⁷⁾ Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Copper
Detergents, cationic Fluoride Hydrazine Inon Lead ³⁾ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrate Phenol Ortho-Phosphate Ortho-Phosphate SAC ⁴⁾ ⁷⁾ Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Cyanide
Fluoride Hydrazine Iron Lead ³⁾ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Detergents, anionic
Hydrazine Iron Lead ³⁾ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Detergents, cationic
Iron Lead ³⁾ Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Fluoride
Lead 3) Manganese Nickel Nitrate Nitrate Z Nitrite Czone Phenol ortho-Phosphate ortho-Phosphate sAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)	•	•	-	•							Hydrazine
Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Turbidity (Formazine/DIN) 4)											Iron
Nitrate Nitrate Nitrate Nitrate Z Nitrite Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbicitty (Formazine/DIN) 4)											Lead ³⁾
Nitrate Z Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)											Manganese
Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)											Nickel
Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Nitrate
Phenol ortho-Phosphate ortho-Phosphate sAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)		•	-								Nitrate Z
Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)		•	•	•							Nitrite
ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)	•	•								•	Ozone
ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾											Phenol
SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)											ortho-Phosphate
Silica Sulfide Turbidity (Formazine/DIN) 4)											ortho-Phosphate
Sulfide Turbidity (Formazine/DIN) 4)											SAC ^{4) 7)}
Turbidity (Formazine/DIN) 4)	•	-	-	-					•		Silica
(Formazine/DIN) ⁴⁾											Sulfide
Zinc		•							•		
		•									Zinc

NANOCONTROL

Analytical quality control for a complete analytical system

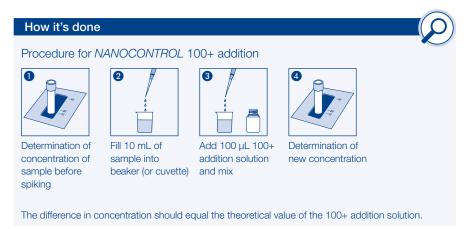
With NANOCONTROL the user can check the complete NANOCOLOR® analytical system and his own work comprehensively and prove the correctness of his results. The performance of consequent analytical quality assurance allows for an objective proof of the accuracy of the photometric analysis resulting in acceptance by local authorities. MACHEREY-NAGEL offers a complete system to test and document the performance of the system for internal quality control. Together with our customers we developed a user-friendly system, future-proof, and tailor-made for the needs of the operator. Continuous development and innovation make us the market leader in all questions regarding quality control in photometric water analysis.

Single and multistandards

In NANOCONTROL standards the respective reference substances are dissolved with a defined concentration. This concentration of the standard solution is selected to be in the middle of the measuring range of the suitable test kit with a narrow confidence interval. The standard solution is applied in the test instead of a normal water sample. The test kit is then handled as described in the instructions. When the result of the test is within the confidence interval, the operator can be sure that all components of his analytical system are working correctly and that no handling error was made. In case of deviations from the given value, equipment and test kit have to be monitored and checked. In addition to solutions with only one standard substance also multistandards are available, containing a mixture of different standard substances. They are designed for special fields of application, e.g. waste water or drinking water analysis.

Hereby various characteristic parameters can be controlled with only one standard solution and the results can then be conveniently documented.

Good to know


All requirements on quality assurance (IQC) can be fulfilled with the *NANOCONTROL* System from MACHEREY-NAGEL.

Find an overview on page 16.

Spiking solutions

The concentration of a parameter in samples is increased by a defined value by spiking it with a standard addition using NANOCONTROL 100+ solutions. Possible interferences in the sample matrix can be detected under consideration of the recovery rates. This kind of plausibility test is especially recommended if an unknown sample has to be analyzed for the first time, or if it is known that the sample contains interfering substances as e.g. large amounts of salt or proteins. In addition to a dilution, this method can give insight to possible sources of error, if there is a continuous deviation from the expected measurement result. NANOCONTROL 100+ solutions are available for multistandards as well as single standards.

NANOCONTROL

Ordering information

Standards

Standard	REF	Test number	Test	Number of tests	Concentration of standard 1)	Confidence interval
Single standards						
AOX 3	925 07	0-07	AOX 3	20	1.0 mg/L AOX	0.8-1.2 mg/L AOX
■ BOD ₅	925 82	8-22/8-25	BOD ₅ /BOD ₅ -TT	10	210 mg/L O ₂	170–250 mg/L O ₂
Chlorine	925 17	0-17 1-16	Chlorine / Ozone 2 Chlorine	30	0.80 mg/L Cl ₂ 1.00 mg/L Cl ₂	0.70–0.90 mg/L ${\rm Cl_2}$ 0.90–1.10 mg/L ${\rm Cl_2}$
■ Chromate	925 24	0-24 0-59 1-25	Chromate 5 total Chromium 2 Chromate	15	2.0 mg/L CrO ₄ ²⁻ 1.12 mg/L Cr 0.40 mg/L CrO ₄ ²⁻	1.8–2.2 mg/L CrO ₄ ^{2–} 1.00–1.23 mg/L Cr 0.36–0.44 mg/L CrO ₄ ^{2–}
COD 60	925 22	0-27/0-22	COD 40/COD 60	15	30 mg/L O ₂	26–34 mg/L O ₂
COD 160	925 26	0-26/0-33/0-36	COD 160/COD 300/COD LR 150	15	100 mg/L O ₂	90–110 mg/L O ₂
COD 1500	925 29	0-30/0-29/0-38	COD 600/COD 1500/COD HR 1500	15–30	400 mg/L O ₂	360–440 mg/L O ₂
COD 15000	925 28	0-23 0-28	COD 10000 COD 15000	30–150	4.00 g/L O ₂ 4.0 g/L O ₂	3.60–4.40 g/L O ₂ 3.6–4.4 g/L O ₂
■ Nitrite	925 68	0-68 0-69 1-67	Nitrite 2 Nitrite 4 Nitrite	15–150	0.30 mg/L NO ₂ -N 2.10 mg/L NO ₂ -N 0.060 mg/L NO ₂ -N	$0.25-0.35 \mathrm{mg/L} \mathrm{NO_2-N}$ $1.9-2.3 \mathrm{mg/L} \mathrm{NO_2-N}$ $0.054-0.066 \mathrm{mg/L} \mathrm{NO_2-N}$
ortho-Phosphate	925 76	0-76 1-77	ortho- and total Phosphate 1 ortho-Phosphate	15	1.00 mg/L PO ₄ -P 0.2 mg/L PO ₄ -P	0.90–1.10 mg/L PO ₄ -P 0.18–0.22 mg/L PO ₄ -P
Sulfate	925 86	0-86	Sulfate 200	15	120 mg/L SO ₄ ²⁻	102-138 mg/L SO ₄ ²⁻
Sulfite	925 90	0-90	Sulfite 100	15	50 mg/L SO ₃ ²⁻	45-55 mg/L SO ₃ ²⁻
■ TOC 30	925 75	0-75	TOC 30	15	10 mg/L C	8.5–11.5 mg/L C
■ TOC 300	925 78	0-78	TOC 300	15	100 mg/L C	85–115 mg/L C
Multistandards						
Sewage outflow 1	925 011	0-04 0-26 0-33 0-11 0-36 0-65 0-64 1-65 0-81 0-92	Ammonium 10 COD 160 COD 300 COD 4000 COD LR 150 Nitrate 8 Nitrate 50 Nitrate ortho- and total Phosphate 5 total Nitrogen TN _b 60	12–120	3.0 mg/L NH ₄ -N 114 mg/L O ₂ 114 mg/L O ₂ 2600 mg/L O ₂ 114 mg/L O ₂ 6.00 mg/L NO ₃ -N 6.0 mg/L NO ₃ -N 6.0 mg/L NO ₃ -N 2.50 mg/L P 20 mg/L N	2.7–3.3 mg/L NH ₄ -N 103–125 mg/L O ₂ 103–125 mg/L O ₂ 2340–2860 mg/L O ₂ 103-125 mg/L O ₂ 5.20–6.80 mg/L NO ₃ -N 5.2–6.8 mg/L NO ₃ -N 5.2–6.8 mg/L NO ₃ -N 2.25–2.75 mg/L P 18–22 mg/L N
Sewage outflow 2	925 010	0-03 0-27 0-22 0-65 0-64 1-65 0-76 0-81 0-83	Ammonium 3 COD 40 COD 60 Nitrate 8 Nitrate 50 Nitrate total Phosphate 1 total Phosphate 5 total Nitrogen TN _b 22	12–120	1.50 mg/L NH ₄ -N 30 mg/L O ₂ 30 mg/L O ₂ 3.00 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 1.00 mg/L P 1.00 mg/L P 12.0 mg/L N	$\begin{array}{l} 1.30-1.70 \text{ mg/L NH}_4-\text{N} \\ 26-34 \text{ mg/L O}_2 \\ 26-34 \text{ mg/L O}_2 \\ 2.60-3.40 \text{ mg/L NO}_3-\text{N} \\ 2.6-3.4 \text{ mg/L NO}_3-\text{N} \\ 2.6-3.4 \text{ mg/L NO}_3-\text{N} \\ 2.6-3.4 \text{ mg/L P}_3-\text{N} \\ 0.90-1.10 \text{ mg/L P} \\ 0.90-1.40 \text{ mg/L P} \\ 10.0-14.0 \text{ mg/L N} \end{array}$
Sewage inflow	925 012	0-05 0-30 0-29 0-28 0-12 0-38 0-64 0-66 0-80 0-88	Ammonium 50 COD 600 COD 1500 COD 15000 COD 60000 COD HR 1500 Nitrate 50 Nitrate 250 total Phosphate 15 total Nitrogen TN _b 220	30–300	25.0 mg/L NH ₄ -N 400 mg/L O ₂ 400 mg/L O ₂ 10.0 g/L O ₂ 10.0 g/L O ₂ 400 mg/L O ₂ 15.0 mg/L NO ₃ -N 15 mg/L NO ₃ -N 8.00 mg/L P 75 mg/L N	22.0–28.0 mg/L NH ₄ -N 360–440 mg/L O ₂ 360–440 mg/L O ₂ 9.0–11.0 g/L O ₂ 9.0–11.0 g/L O ₂ 360–440 mg/L O ₂ 13.5–16.5 mg/L NO ₃ -N 13–17 mg/L NO ₃ -N 7.20–8.80 mg/L P 67–83 mg/L N

¹⁾ Please see the instruction leaflet/evaluation sheet.
²⁾ Shelf life 6 weeks after first opening/see instruction leaflet.
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Addition	Shelf life 2)	GHS	Standard
			Single standards
1.0 mg/L AOX	1 year		AOX 3
-	1 year (2-8 °C)		BOD ₅
-	1 year		Chlorine
0.5 mg/L CrO ₄ ²⁻	1 year	•	Chromate
-	1 year (2-8 °C)		COD 60
_	1 year (2-8 °C)		COD 160
-	1 year (2-8 °C)		COD 1500
-	1 year (2–8 °C)		COD 15000
0.02 mg/L NO ₂ -N -	1 year		Nitrite
0.10 mg/L PO ₄ -P 0.10 mg/L PO ₄ -P	1 year		ortho-Phosphate
	1 year		Sulfate 200
_	1 year		Sulfite
-	1 year (2-8 °C)		TOC 30
-	1 year (2-8 °C)		TOC 300
			Multistandards
1.0 mg/L NH ₄ -N 25 mg/L O ₂ 25 mg/L O ₂ - - 1.50 mg/L NO ₃ -N 1.5 mg/L NO ₃ -N 1.5 mg/L NO ₃ -N 0.25 mg/L P	1 year		Sewage outflow 1
$\begin{array}{c} 0.30 \text{ mg/L NH}_4\text{-N} \\ 10 \text{ mg/L O}_2 \\ 10 \text{ mg/L O}_2 \\ 3.00 \text{ mg/L NO}_3\text{-N} \\ 3.0 \text{ mg/L NO}_3\text{-N} \\ 3.0 \text{ mg/L NO}_3\text{-N} \\ 0.30 \text{ mg/L P} \\ 0.30 \text{ mg/L P} \\ 3.3 \text{ mg/L N} \end{array}$	8 months (2–8 °C)		Sewage outflow 2
10 mg/L NH ₄ -N 100 mg/L O ₂ 100 mg/L O ₂ - 100 mg/L O ₂ 6.0 mg/L NO ₃ -N 6 mg/L NO ₃ -N 1.00 mg/L P	1 year		Sewage inflow

NANOCONTROL

Standard	REF	Test number	Test	Number of tests	Concentration of standard 1)	Confidence interval
Metals 1	925 015	0-14	Cadmium 2	15–60	1.00 mg/L Cd ²⁺	0.80-1.20 mg/L Cd ²⁺
		1-13	Cadmium		0.10 mg/L Cd ²⁺	0.08–0.12 mg/L Cd ²⁺
		0-21	Chloride 50		20 mg/L Cl ⁻	17–23 mg/L Cl ⁻
		0-19	Chloride 200		80 mg/L Cl ⁻	70–90 mg/L Cl ⁻
		0-244	Chromate 5 + NanOx Metal		1.0 mg/L Cr	0.8–1.2 mg/L Cr
		0-59	total Chromium 2		1.0 mg/L Cr	0.8–1.2 mg/L Cr
		1-251	Chromate + NanOx Metal		1.0 mg/L Cr	0.8–1.2 mg/L Cr
		1-253	Chromate + total Chromium		1.0 mg/L Cr	0.8–1.2 mg/L Cr
		0-37	Iron 3		1.00 mg/L Fe ³⁺	0.80-1.20 mg/L Fe ³⁺
		1-36	Iron		0.10 mg/L Fe ³⁺	0.08–0.12 mg/L Fe ³⁺
		0-40	Fluoride 2		1.0 mg/L F ⁻	0.8–1.2 mg/L F ⁻
		1-42	Fluoride		1.00 mg/L F ⁻	0.80–1.20 mg/L F ⁻
		0-86	Sulfate 200		80 mg/L SO ₄ ²⁻	70–90 mg/L SO ₄ ^{2–}
		0-96	Zinc 4		1.00 mg/L Zn ²⁺	0.80–1.20 mg/L Zn ²⁺
		1-95	Zinc		0.10 mg/L Zn ²⁺	0.08–0.12 mg/L Zn ²⁺
NA state O	005.040			45		
Metals 2	925 016	0-09	Lead 5	15	2.50 mg/L Pb ²⁺	2.25–2.75 mg/L Pb ²⁺
		1-10	Lead		0.25 mg/L Pb ²⁺	0.22–0.28 mg/L Pb ²⁺
		0-45	Potassium 50		20 mg/L K ⁺	18–22 mg/L K ⁺
		0-53/0-54	Copper 5 / Copper 7		2.00 mg/L Cu ²⁺	1.80–2.20 mg/L Cu ²⁺
		1-53	Copper		0.60 mg/L Cu ²⁺	0.50–0.70 mg/L Cu ²⁺
		0-61/0-71	Nickel 7 / Nickel 4		2.00 mg/L Ni ²⁺	1.80–2.20 mg/L Ni ²⁺
		1-62	Nickel		0.60 mg/L Ni ²⁺	0.50-0.70 mg/L Ni ²⁺
Sewage	925 013	0-08	Ammonium 100	15–300	40 mg/L NH ₄ -N	36–44 mg/L NH ₄ -N
		0-06	Ammonium 200		80 mg/L NH ₄ -N	72–88 mg/L NH ₄ -N
		0-23	COD 10000		4.00 g/L O ₂	3.60-4.40 g/L O ₂
		0-28	COD 15000		4.0 g/L O ₂	3.6-4.4 g/L O ₂
		0-66	Nitrate 250		30 mg/L NO ₃ -N	27–33 mg/L NO ₃ -N
		0-55	total Phosphate 45		25.0 mg/L P	22.0-28.0 mg/L P
		0-79	ortho-Phosphate 50		25.0 mg/L PO ₄ -P	22.0-28.0 mg/L PO ₄ -P
Drinking water	925 018	0-98	Aluminum 07	15–30	0.50 mg/L Al ³⁺	0.44-0.56 mg/L Al ³⁺
, and the second		1-02	Aluminium		0.50 mg/L Al ³⁺	0.44–0.56 mg/L Al ³⁺
		1-05	Ammonium		0.20 mg/L NH ₄ -N	0.17–0.23 mg/L NH ₄ -N
		0-21	Chloride 50		20 mg/L Cl⁻	17–23 mg/L Cl ⁻
		1-20	Chloride		20 mg/L Cl ⁻	17–23 mg/L Cl ⁻
		0-37	Iron 3		1.50 mg/L Fe ³⁺	1.30–1.70 mg/L Fe ³⁺
		1-36	Iron		1.50 mg/L Fe ³⁺	1.30–1.70 mg/L Fe ³⁺
		0-58	Manganese 10		1.5 mg/L Mn ²⁺	1.3–1.7 mg/L Mn ²⁺
		1-60	Manganese		1.50 mg/L Mn ²⁺	1.30–1.7 mg/L lviii 1.30–1.70 mg/L Mn ²⁺
		0-86	Sulfate 200		1.50 mg/L Nm	1.30–1.70 Hig/L IVIII 102–138 mg/L SO ₄ 2-
		0-86	Sulfate LR 200		120 mg/L SO ₄ ²	102–138 mg/L SO ₄ – 102–138 mg/L SO ₄ ^{2–}
		U-02	Sullate LN 200		120 HIg/L 504"	102-130 HIg/L 3U4 ^L

¹⁾ Please see the instruction leaflet/evaluation sheet.
²⁾ Shelf life 6 weeks after first opening/see instruction leaflet.
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Addition	Shelf life 2)	GHS	Standard
- 10 mg/L Cl ⁻ 50 mg/L Cl ⁻ 0.2 mg/L Cr 0.2 mg/L Cr 0.2 mg/L Cr 0.2 mg/L Cr 0.30 mg/L Fe ³⁺ 0.30 mg/L Fe ³⁺ 0.5 mg/L F ⁻ 0.50 mg/L F ⁻ 50 mg/L SO ₄ ²⁻ 0.40 mg/L Zn ²⁺ 0.40 mg/L Zn ²⁺	1 year		Metals 1
0.50 mg/L Pb ²⁺ - 10 mg/L K ⁺ 0.70 mg/L Cu ²⁺ 0.70 mg/L Cu ²⁺ 0.70 mg/L Ni ²⁺ 0.70 mg/L Ni ²⁺	1 year		Metals 2
$30 \text{ mg/L NH}_4\text{-N}$ $30 \text{ mg/L NH}_4\text{-N}$ - - $10 \text{ mg/L NO}_3\text{-N}$ 5.0 mg/L P $5.0 \text{ mg/L PO}_4\text{-P}$	1 year		Sewage
0.20 mg/L Al ³⁺ 0.20 mg/L Al ³⁺ 0.20 mg/L NH ₄ -N 5.0 mg/L Cl ⁻ 5.0 mg/L Cl ⁻ 0.20 mg/L Fe ³⁺ 0.20 mg/L Fe ³⁺ 1.0 mg/L Mn ²⁺ 50 mg/L SO ₄ ²⁻ 50 mg/L SO ₄ ²⁻	1 year		Drinking water

NANOCOLOR® reagents for sample decomposition

Sample preparation for photometric analysis

Usually only dissolved compounds of a parameter are detected in water analysis. In strongly contaminated waters and industrial waste water these parameters are often bound in complexes or other structures and are therefore not directly accessible for the respective test. If it is necessary to determine the total amount of these substances, a decomposition step has to be done prior to analysis, where on most cases large amounts of organic material have to be decomposed. Within the NANOCOLOR® system there are various rapid and easy methods available for conventional sample decomposition with solid reagents and kits with liquid reagents for complex matrices. In some of the NANOCOLOR® tube tests the reagents for sample preparation are already included and pre-dosed in additional test tubes next to the cuvettes. This is the perfect combination for the determination of total parameters such as total nitrogen or total chromium. Other reagents for sample preparation are available separately and are suitable for more than one parameter. After digestion the samples are then processed as described in the instructions for the respective NANOCOLOR® test kit.

NANOCOLOR® NanOx N - Oxidative digestion of samples containing nitrogen

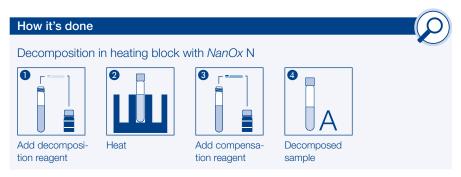
NANOCOLOR® NanOx N consists of an easy-to-dose solid oxidation reagent (peroxodisulfate) and a compensation reagent to eliminate interfering substances. After digestion, all inorganic and organic nitrogen compounds in the sample have been converted to nitrate and can be detected. The digestion of larger sample volumes allows a multiple determination from just one preparation.

NANOCOLOR® NanOx Metal - Oxidation of samples containing heavy metals

Undissolved metal ions and metal oxides are dissolved with the aid of acids and heat, metal ions are de-complexated and adsorptive or interfering substances are eliminated. Optimal recovery rates can be found in the analysis of heavy metals. NANOCOLOR® NanOx Metal consists of an easy-to-dose solid oxidation reagent (peroxodisulfate) and a neutralizing reagent to adjust the pH value for the following determination of different metals. In addition to the digestion in the heating block, it is possible to digest samples in less time using a microwave.

Good to know

For further accessories for digestions with NANOCOLOR® NanOx Metal in a heating block or a microwave see page 106.


NANOCOLOR® reagents for sample decomposition

NANOCOLOR® crack set

For a more powerful and complete digestion of resistant samples we recommend to use the NANOCOLOR® crack set. The included liquid reagents allow an oxidative sample preparation under acidic conditions (peroxodisulfate/sulfuric acid) and normal pressure at 100 °C in the heating block.

NANOCOLOR® sludge

In Germany, the sewage sludge regulation regularizes the use of sludge as fertilizer in agriculture and in market gardens. Therein a limit for seven heavy metals is established. The determination of these parameters is possible with high accuracy using NANOCOLOR® sludge (aqua regia) for digestion. A thorough training is recommended to learn the special working techniques before using the kit. Detailed instructions regarding sludge analysis can be provided free of charge.

Ordering information

Description	REF	Number of decompositions	Shelf life	GHS
Determination of total Nitrogen				
■ NANOCOLOR® NanOx N solid reagents for the oxidative digestion prior to total nitrogen determination (heating block or microwave)	918 979	50–100	1 year	
Sludge analysis				
■ Reagent set NANOCOLOR® sludge: aqua regia digestion of sludge- and soil samples in the heating block	918 50	10	3 years	
Starter set combination of necessary accessories for sludge analysis (without reagents, photometer, heating block) incl. instructions	916 10	-	-	
Crack set for aqueous systems				
■ Crack set incl. sulfuric acid/potassium peroxodisulfate for the oxidative digestion in the heating block	918 08	100	3 years	
Decomposition apparatus for sample decomposition incl. decomposition tube, reducing adaptor and condensor	916 29	-	_	
Determination of total metals and phosphorous				
■ NANOCOLOR® NanOx Metal solid reagents for the oxidative decomposition of samples containing heavy metals and total phosphate (heating block or microwave)	918 978	75–150	1 year	
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed info	ormation please	see the SDS.		

NANOCOLOR® accessories

Everything from one hand

An indicator for the quality of an analytical system is its completeness. Therefore, accessories for sample drawing, preparation, and conservation as well as for decomposition, extraction and filtration are part of the NANOCOLOR® system.

Getting all these components from one hand allows a smooth work flow leading to optimal results.

Ordering information

Description	REF	Content	Number of tests	Shelf life	GHS
General accessories					
Volumetric flask 10 mL for reduced analytical preparations	916 42	2 pieces			
Volumetric flask 25 mL with NS 10/19 and PE stopper for analytical preparations	916 61	2 pieces			
Volumetric flask 100 mL with NS 12/21 and PE stopper	916 83	2 pieces			
Erlenmeyer flask 50 mL	916 212	1 piece			
Erlenmeyer flask 100 mL	916 38	1 piece			
Measuring cylinder 50 mL	916 84	1 piece			
Bulb for filling 20 mL pipettes	916 65	1 piece			
Glass rod 30 cm	916 39	1 piece			
Tweezers for picking of NANOFIX capsules	916 114	1 piece			
Plastic wash bottle 500 mL with spraying attachment	916 89	1 piece			
Magnetic stirring unit	970 115	1 piece			
Mini-magnet for stirring (30 x 6 mm)	916 211	1 piece			
Timer with digital display and acoustic signal (up to 99:59 min)	916 96	1 piece			
Porcelain mortar 90 mm Ø with pestle	916 88	1 piece			
Holder for 15 round glass tubes and 2 tubes for sample digestion	916 23	1 piece			
Safety kit, consists of safety glasses, gloves and rubber apron	916 90	1 piece			
Adhesive tape, glass fiber reinforced, for closing the shipping boxes for hazardous goods	916 20	1 roll, 50 m			
Glass funnel 60 mm Ø	916 81	1 piece			
■ Glass funnel 80 mm Ø	916 82	1 piece			
Filter circles MN 1670, 11 cm Ø	470 011	100 pieces			
Filter circles MN 640 d, 15 cm Ø	205 015	100 pieces			
Membrane filtration					
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters 0.45 µm	916 50	1 set			
■ CHROMAFIL® membrane filters 0.45 µm	916 52	50 pieces			
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters 1.2 μm	916 511	1 set			
■ CHROMAFIL® membrane filters 1.2 µm	916 513	50 pieces			
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters GF/PET 0.45 μm	916 01	1 set			
■ CHROMAFIL® membrane filters GF/PET 0.45 µm	916 02	50 pieces			
Pipetting					
■ Piston pipette 200 µL	916 72	1 piece			
■ Plastic tips transparent for piston pipettes 5–200 µL	916 915	100 pieces			
■ Piston pipette 500 µL	916 53	1 piece			
■ Plastic tips transparent for piston pipettes 100–1000 µL	916 76	100 pieces			
■ Piston pipette 1.0 mL	916 71	1 piece			
Plastic tips transparent for piston pipettes 100–1000 µL	916 76	100 pieces			

NANOCOLOR® accessories

Description	REF	Content	Number of tests	Shelf life	GHS
■ Piston pipette 2.0 mL	916 917	1 piece			
■ Plastic tips transparent for piston pipettes 1.0–5.0 mL	916 916	100 pieces			
■ Digital piston pipette 5–50 µL, adjustable, with tip ejector	916 58	1 piece			
■ Digital piston pipette 50–200 μL, adjustable, with tip ejector	916 914	1 piece			
■ Plastic tips transparent for piston pipettes 5–50 µL and 50–200 µL	916 915	100 pieces			
■ Digital piston pipette 100–1000 µL, adjustable, with tip ejector	916 77	1 piece			
■ Plastic tips transparent for piston pipettes 100–1000 µL	916 76	100 pieces			
■ Digital piston pipette 1.0–5.0 mL, adjustable, with tip ejector	916 909	1 piece			
■ Plastic tips transparent for piston pipettes 1.0–5.0 mL	916 916	100 pieces			
■ Pipette stand for 6 piston pipettes	916 79	1 piece			
Extraction					
■ 100 mL separation funnel with NS glass tap and PE stopper for extraction methods	916 64	2 pieces			
Stand with clamps and bosses for 4 separation funnels, height 70 cm	916 95	1 piece			
AOX					
■ Supplement kit for AOX for the sensitive AOX range (0.01–0.30 mg/L AOX) and for higher COD values (required above 50 mg/L COD)	918 072	2 x 4 g	20	1 year	•
Chloride detection kit AOX for samples with high chloride contents	918 073	10 mL		1 year	
Starter set for AOX, consists of tweezers, funnel, cartridge adaptor, beaker, glass rods, 1 L bottle and syringes	916 111	1 set			
Pump set for AOX, consists of centrifugal pump, connecting tubes, graduated 1 L reservoir with tap and stand with clamps and bosses	916 115	1 set			
■ NANOCOLOR® cartridge adapter for AOX pump-set	916 113	1 piece			
BOD_5					
■ BOD ₅ nutrient mixture (without <i>N</i> -ally/thiourea [NATU])	918 994	20 cuvettes	20–80	2 years	
■ BOD ₅ nutrient mixture PLUS (with <i>N</i> -allylthiourea [NATU])	918 995	20 cuvettes	20–80	2 years	
■ BOD ₅ accessories set, consists of electric air pump, 10 L PE container, 2 aerating bricks, 1 L laboratory bottle, 4 Winkler bottles	916 918	1 set			
■ BOD ₅ -TT accessories set, consists of electric air pump, 2 aerating bricks, 1 L PE container, 2 reaction vessels (40 mL)	916 925	1 set			
■ Reaction vessels for BOD ₅ -TT	916 926	10 pieces			
Oxygen bottles according to Winkler (250–300 mL)	916 919	4 pieces			
■ Aerating bricks for BOD ₅ determination	916 920	4 pieces			
COD		<u></u>			
■ Chloride complexing agent for chloride concentration of 1000–7000 mg/L Cl	918 911	100 mL	100	1.5 years	
Cartridges for chloride elimination of up to 2000 mg/L chloride per cartridge	963 911	10 pieces	10	1 year (2–8 °C)	•
■ COD- and TOC-free water	918 993	50 mL		1 year	
Safety bottle for shaking COD tubes	916 37	1 piece			
Hydrocarbons		•			
Extraction of HC from water	918 571	1 box	20	1.5 years	
■ Extraction of HC from soil	918 572	1 box	20	1.5 years	
Separation funnel 500 mL with PTFE tap and glass stopper	916 08	2 pieces		•	
■ CHROMABOND® column 45 mL with 4 g aluminum oxide ALOX N for purification of water and soil extracts by solid phase extraction	730 250	20 pieces	20	3 years	
■ Syringe adaptor for CHROMABOND® columns 45 mL	916 03	2 pieces			
Plastic syringes 50 mL	916 09	10 pieces			
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. Fo		•	SDS		

NANOCOLOR® www.mn-net.com www.mn-net.com

NANOCOLOR® accessories

Description	REF	Content	Number of tests	Shelf life	GHS
Stop valve for pipette tips for low-viscosity liquids	916 21	100 pieces			
■ Threaded union for coupling the sample tube with the COD tube	916 04	2 pieces			
Soxhlet apparatus 30 mL, with 100 mL round flask with flat bottom and condenser (3 parts); additionally a heater is required	916 05	1 set			
■ Extraction thimbles MN 645 23 mm Ø x 100 mm	645 008	25 pieces			
■ Measuring flask 50 mL with PE stopper	916 06	2 pieces			
TOC					
■ NANOCOLOR® TIC-Ex for removal of TIC, incl. cuvette holder, power supply 100–240 V, 50/60 Hz, 9 V + 3 adapters, manual	916 993	1 piece			
■ Manual for NANOCOLOR® TIC-Ex	916 994	1 piece			
■ Cuvette holder for NANOCOLOR® TIC-Ex	916 995	1 piece			
■ Power supply for QUANTOFIX® Relax and NANOCOLOR® TIC-Ex	930 995	1 piece			
■ Pipette tips for NANOCOLOR® TIC-Ex	916 997	20 pieces			
■ Pipette tips for NANOCOLOR® TIC-Ex	916 998	200 pieces			
■ Cover for NANOCOLOR® VIS for TOC determination	916 996	1 piece			
■ Holder for 15 round glass tubes and 2 tubes	916 23	1 piece			
■ NANOCOLOR® accessory set for TOC (small), content: 1 magnetic stirrer (1 stirring position), 2 beakers 100 mL, 2 magnetic stirring bars 35 mm	916 990	1 set			
■ NANOCOLOR® accessory set for the determination of TOC (big), content: 1 magnetic stirrer (15 stirring positions), 6 beakers 100 mL, 6 magnetic stirring bars	916 991	1 set			
■ NANOCOLOR® beaker 100 mL with magnetic stirring bar 35 mm	916 992	2 pieces			
■ NANOCOLOR® thermocaps for TOC determination	916 116	3 pieces			
Special chemicals for elimination of interferences					
■ Distilled water	918 932	1 L		1 year	
■ Silica-free water	918 912	1 L		1 year	
■ Isobutyl methyl ketone (MIBK) for phenol test 0-74	918 929	100 mL			
Reagents for sample preparation					
■ Carrez solutions 1 + 2, for nitrite in cooling lubricants, sewage water from landfills etc.	918 937	2 x 30 mL	30	2 years	
Removal of interfering calcium for determinations of copper, nickel and zinc by lime precipitation clarification	918 939	100 g	20	2.5 years	
Amidosulfuric acid for nitrite elimination	918 973	25 g		2 years	
■ Ammonium compensation reagent for tube test NANOCOLOR® Potassium 50	918 045	30 mL	100	2 years	
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For	detailed informat	ion please see the	SDS.		

High quality filter papers MN filter papers since 1911

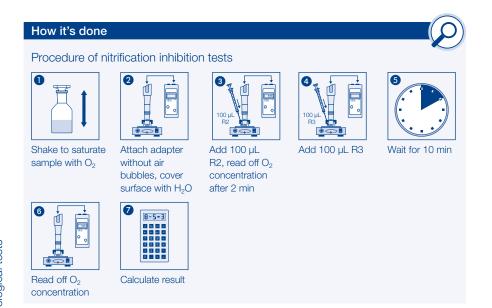
German quality

- More than 7000 different filtration products
- Reliable results
- Flexible and custom-made products
- Special filter papers for sewage plants according to DIN EN 872

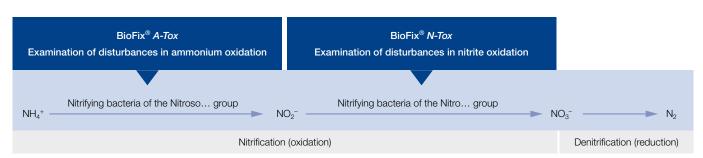
Microbiological tests

BioFix [®]	
Nitrification inhibition tests	112
Luminous bacteria toxicity tests	114

Nitrification inhibition tests


Easy control of nitrification

The nitrification inhibition tests BioFix® A-Tox/N-Tox provide an easy method to control the biology on sewage plants. These BioFix® nitrification inhibition tests can be used to measure the inhibition of the nitrification in all types of water. Interferences by single substances as well as substance mixtures are detected.


Nitrification is an important step during waste water purification in order to keep the concentration of ammonium ions in the effluents of the sewage plant as low as possible. Additionally, nitrification is the prerequisite for denitrification for complete nitrogen elimination. This process is required for waste water treatment in many countries.

BioFix® nitrification inhibition tests allow the investigation of the first and second step of nitrification separately as well as undifferentiated. With BioFix® A-Tox one tests, whether the first step of the nitrification, the oxidation of ammonium, is inhibited by sample components. BioFix® N-Tox is used to analyze the second step of the nitrification, the oxidation of nitrite.

Whether the nitrification is inhibited by sample components in general can be determined with the undifferentiated screening test BioFix® A/N-Tox.

Rapid

- Test only takes 10 min
- Pre-dosed nitrificants
- Ready-to-use reagents

Easy

- Considerably less effort necessary compared to DIN-procedure
- Evaluation without inconvenient equipment
- Dispose of used reagents without constraints

Safe

- High sensitivity
- Very good reproducibility due to defined bacteria strains
- Differentiated analysis of both nitrification steps possible

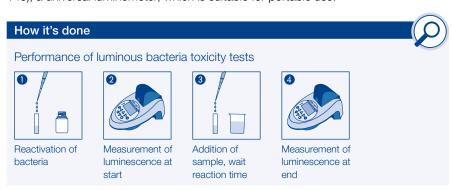
Ordering information

Test	REF	Number of tests	Shelf life
■ BioFix® A-Tox for evaluation of the biological conversion of ammonium to nitrite (1st step of nitrification)	970 001	10–19	1 year (2-8 °C)
■ BioFix® <i>N-Tox</i> for evaluation of the biological conversion of nitrite to nitrate (2 nd step of nitrification)	970 002	10–19	1 year (2-8 °C)
■ BioFix® nitrification inhibition test, reagent <i>A-Tox</i> R2, enriched nitrificants for oxidation of ammonia	970 903	10 x 2 mL	1 year (2-8 °C)
■ BioFix® nitrification inhibition test, reagent <i>N-Tox</i> R2, enriched nitrificants for oxidation of nitrite	970 902	10 x 2 mL	1 year (2-8 °C)

Accessories

Description	REF	Content
■ Starter kit for BioFix® nitrification inhibition tests: 1 electrode adaptor which holds the oxygen electrode, 3 x 2 seals for the electrode adaptor, 2 mini-magnets, 1 micro syringe 100 µL, 1 filtration syringe 20 mL	970 101	1 set
■ CHROMAFIL® membrane filters, 0.45 µm	916 52	50 pieces
■ Electrode adaptor	970 111	1 piece
■ Special adaptor 12 mm for oxygen electrodes with membrane heads type WP3-ST	970 116	1 piece
Seals for electrode adaptor	970 112	5 x 2 pieces
■ Reaction vessels	970 113	50 pieces
■ Magnetic stirring unit without heater	970 115	1 piece
■ Mini-magnets	970 114	5 pieces
■ Stand, complete with 4 clamps and bosses	916 95	1 piece

Luminous bacteria toxicity tests


Tests for bio toxicity in accordance to ISO 11348

BioFix® luminous bacteria tests use bio luminescence to determine bio toxicity. In contrast to chemical single parameter analysis, luminous bacteria tests allow an evaluation of the over-all-toxicity of a sample. The test principle is based on the static measurement of the bio luminescence of luminous bacteria (strain *Vibrio fischeri* NRRL B-11177), where a defined sample volume is mixed with a suspension of bacteria. Subsequently, the inhibition of the luminescence in the sample is determined in comparison to an uninhibited control solution.

The tests are easy to use and the procedure is normed (ISO 11348). This guarantees safe and reliable results with low effort. BioFix® luminous bacteria tests are available in various, application specific packing sizes. The applications for these tests reach from the analysis of ground, surface, seepage and all types of waste water to the analysis at waste disposal sites. Furthermore they allow the determination of the bio toxicity of solid material e.g. soil samples, sediments and solid waste.

BioFix[®] luminous bacteria tests are available with liquid-dried (according to ISO 11348-2) and freeze-dried bacteria (according to ISO 11348-3). Used reagents and bacteria can be disposed of easily by washing them down the drain.

The evaluation of the toxicity analysis is performed with the BioFix® Lumi-10 (see page 146), a universal luminometer, which is suitable for portable use.

Ordering information

Test	REF	Number of tubes	Number of tests	Shelf life	Liquid- dried	Freeze- dried
■ Lumi luminous bacteria, with reconstitution solution	945 002	20	up to 2000	2 years		
Lumi luminous bacteria, with reconstitution solution	945 003	10	up to 1000	2 years		
Lumi luminous bacteria, with medium	945 006	20	up to 400	2 years		
Lumi luminous bacteria, with medium	945 007	10	up to 200	2 years		
Lumi multi-shot, with reactivation and control solution	945 022	10	up to 100	2 years		
■ Lumi single-shot, with reactivation and control solution	945 021	20	up to 40	2 years		
■ Lumi luminous bacteria, with reactivation and NaCl solution	945 023	10	up to 200	2 years	-	
■ Lumi luminous bacteria, with reactivation and NaCl solution	945 024	20	up to 400	2 years	-	
Lumi luminous bacteria, with reactivation and NaCl solution	945 025	10	up to 100	2 years	-	

All freeze/liquid-dried BioFix® luminous bacteria are also suited for luminometers of other manufacturers (e.g. LUMIStox, LUMISmini of HACH). All luminous bacteria tests by MACHEREY-NAGEL need to be stored at -20 ± 2 °C.

Luminous bacteria toxicity tests

Accessories

Description	REF	Content
■ BioFix® Lumi diluent	945 601	1 L
■ BioFix® Lumi osmotic adjusting solution	945 602	50 mL
■ BioFix® Lumi reconstitution solution for freeze-dried luminous bacteria	945 603	1 L
■ BioFix® Lumi diluent for solid phase test	945 604	1 L
■ BioFix® Lumi medium for freeze-dried luminous bacteria in accordance with DIN EN ISO 11348-3	945 608	1 L
Absorbance color correction cuvettes with 100 aspirators	940 006	4 pieces
■ Glass cuvettes, 50 x 12 mm, plain bottom, 12 mm Ø	916 912	690 pieces
■ Rack for glass cuvettes 12 mm Ø, 5 x 10 positions	945 013	1 piece

Photometers	
PF-3	118
PF-12 ^{Plus}	122
NANOCOLOR® 500 D	124
NANOCOLOR® VIS II and UV/VIS II	126
NANOCONTROL	130
Accessories for photometers	131
Heating blocks	
	134 VARIO C2 M134
NANOCOLOR® VARIO Mini	137
NANOCOLOR® VARIO HC	138
NANOCOLOR® T-Set and USB T-Set	140
Accessories for heating blocks	142
Reflectometer	
QUANTOFIX® Relax	144
Luminometer	
Biofix® Lumi-10	146

Compact photometer for mobile water analysis

The compact photometer PF-3 is the smallest member of the MACHEREY-NAGEL photometer family. The device completes our product portfolio and perfectly fits our tradition of reliability, user friendliness and innovation. The instrument comes in multiple versions, equipped with three LEDs and interference filters, designed to meet the analysis requirements of specific applications. Together with the approved VISOCOLOR® ECO and high quality NANOCOLOR® tube tests from MACHEREY-NAGEL, the PF-3 is perfectly suited for mobile analysis directly at the place of sampling. Optionally, the device comes in a practical case with pre-equipped test kits, in a cardboard box or in an empty case for the individual combination with our VISOCOLOR® ECO test kits.

Small, strong, smart

The handy and compact design makes this lightweight the ideal companion for mobile analysis. Its simple operation allows measurements within seconds. Besides the measurement accuracy, simplicity and user friendliness are key features of all MACHEREY-NAGEL devices. The interaction of context-sensitive icons and only four buttons guarantees a smart, clear and language-independent operation.

Fast and reliable results

The centerpiece of the PF-3 is its high-quality optic with the specially selected LEDs and corresponding interference filters. The unique "open slot" technology allows measurements without cuvette slot cover, thus emphasizing the high technical standard of the instrument. This yields into a simple and quick operation for the user, together with highly reliable results. MACHEREY-NAGEL provides free PC software, for an even more comfortable operation. The software makes data management convenient, simple and efficient. Additionally it guarantees a forgery-proof data management.

Be prepared

The variable power supply is of particular convenience for the user and enables reliable measurements in all situations. Besides batteries and an accu-pack, the device can also be powered directly via an USB cable or a power adaptor.

How it's done

Measure

Read result

Good to know

Manifold case solutions are available for the PF-3, which can be individually equipped with test kits. An overview of the available cases is given on page 154.

Good to know

An overview of VISOCOLOR® ECO and NANOCOLOR® tube tests compatible with the PF-3 is given on page 76 and page 88.

Simple

- Intuitive operation with only four keys
- Flat menu structure
- Bright display for safe readings

Robust

- Glass fiber reinforced housing for extreme durability
- Water- and dustproof according to IP 68
- Shock-resistant optics

Flexible

- Various case solutions including reagents
- Additional parameters available f.o.c.
- Compatible with VISOCOLOR® ECO and NANOCOLOR® tests

PF-3	
Туре	LED photometer with microprocessor control, self-test and auto-calibration
Optics	LED + interference filters Insensitive to external light for fast measurements without cuvette slot cover
Wavelengths	3 wavelengths; depending on version Pool/Drinking Water: 450 nm/530 nm/590 nm Soil: 365 nm/450 nm/660 nm COD: 365 nm/450 nm/595 nm Fish: 450 nm/530 nm/660 nm
Wavelength accuracy	± 2 nm, bandwidth at half transmission 10 nm-12 nm
Light source	LED
Detector	Silicon-photodiode
Compatible test kits	NANOCOLOR® tube tests (see page 88) VISOCOLOR® ECO tests (see page 76)
Cuvette slot	Tubes 16 mm OD
Memory	50 results
Display	Backlit graphic display, 128 x 64 pixels, all important data at a glance: result with unit, date, time
Auto-off function	Inactive or automatic shutdown after 5 min, 10 min, 15 min, 20 min
Quality control	With NANOCONTROL NANOCHECK
Operation	Self-explanatory menu guidance, foil keypad, test selection via parameter lists
Interface	Mini-USB
Update	Free of charge via Internet / PC
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	3 AA batteries, rechargeable batteries, USB interface; optional internal accu-pack
Housing	Shock-resistant; waterproof and dustproof, according to IP 68
Dimensions	170 mm x 95 mm x 68 mm
Weight	0.5 kg
Warranty	2 years
CE	CE certified

Compact photometer for mobile water analysis

The photometer PF-12^{Plus} is a device tailored for the mobile water analysis. The iconbased menu guidance and clear taskbar make the PF-12^{Plus} an easy to use photometer for all fields of water and wastewater analysis without the need for extensive training. The device comes in a rugged case equipped with useful accessories and is therefore particularly popular with users for the direct analysis at the point of sampling.

Easy implementation

Measurement results are obtained very quickly with the PF-12^{Plus}, thanks to its simple operation. Equipped with more than 100 preprogrammed methods, it is the ideal companion for analysis on the road. The PF-12^{Plus} comes with easy to understand pictogram instructions in a practical manual for the evaluation of VISOCOLOR® ECO test kits.

Free programming

In addition to the preprogrammed methods, the PF-12^{Plus} offers the possibility to create up to 50 special methods for customized applications. Equations up to 4th degree and logarithmic functions can be programmed systematically.

Turbidity measurements

With its especially positioned 860 nm LED the PF-12^{Plus} enables nephelometric turbidity measurements (NTU) in the range of 1–1000 NTU. Therefore, disturbing turbidities will be detected reliably in parallel to a measurement of tube tests - a huge PLUS on measurement safety. Furthermore, the PF-12^{Plus} offers the possibility to accurately determine the turbidity in transmitted light from 4–350 FAU.

How it's done

Photometric determination with the PF-12 Plus

Read result

Prepare sample Measure

Good to know

Manifold case solutions are available for the PF-12^{Plus}, which can be individually equipped with test kits. An overview of the available cases is given on page 154.

Good to know

An overview of the VISOCOLOR® ECO and NANOCOLOR® tubes compatible with the PF-12^{Plus} is given on page 76 and page 88.

Good to know

Turbidity – a source of error:
Turbidity is often underestimated since it is not always visually recognizable.
During each measurement, the MACHEREY-NAGEL spectrophotometers automatically measure the turbidity and warn the user in case of an interfering turbidity.

Ordering information

 Description
 REF

 ■ Compact photometer PF-12^{Plus} for evaluation of VISOCOLOR® ECO tests and NANOCOLOR® tube tests, incl. software DVD, manual, 4 batteries, 4 empty test tubes, funnel, beaker, syringe, USB cable, calibration cuvette, cleaning cloth and certificate in rugged case
 919 250

Safe

- Easy handling for precise results
- GLP-conform storage of all measurement results
- Comfortable data export and data backup concept

Mobile

- Flexible power supply via batteries or accu-pack
- Backlit graphic display also for critical lighting conditions
- Robust and waterproof according to IP 68

Versatile

- Compatible with NANOCOLOR® and VISOCOLOR® ECO test kits
- Nephelometric turbidity measurement and NTU-check
- Applicable in all fields of water and waste water analysis

recrimical data	
PF-12 ^{Plus}	
Туре	Filter photometer with microprocessor control, self-test and auto-calibration
Optics	Automatic filter wheel with 7 interference filters Insensitive to external light for fast measurements without cuvette slot cover
Wavelengths	345 nm/436 nm/470 nm/540 nm/585 nm/620 nm/690 nm plus 1 compartment for an additional filter; 860 nm LED for NTU measurement
Wavelength accuracy	± 2 nm, bandwidth at half transmission 10 nm-12 nm
Light source	Xenon high pressure lamp
Detector	Silicon-photodiode
Blank value	Automatic
Measuring modes	Over 100 preprogrammed tests and special methods, absorbance, transmission, factor, standard, nephelometric turbidity measurement; 50 freely programmable methods
Compatible test kits	NANOCOLOR® tube tests (see page 88) VISOCOLOR® ECO tests (see page 76)
Photometric range	± 3 A
Photometric accuracy	± 1 %
Stability	< 0.002 A/h
Cuvette slot	Tubes 16 mm OD
Data memory	1000 results, GLP conform
Display	Backlit graphic display, 128 x 64 pixels. All important data at a glance: Result with unit, date, time, sample number, sample location, dilution, measuring range control bar
Auto-off function	Inactive or automatic shutdown after 5 min, 10 min, 15 min, 20 min, 60 min
Quality control	With NANOCONTROL NANOCHECK
Operation	Self-explanatory menu guidance, foil keypad, test selection via parameter lists
Interface	USB 2.0
Languages	DE/EN/FR/ES/IT/NL/HU/PL/PT/CZ/ID/SL/TR/MY
Update	Free of charge via Internet / PC
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	4 AA batteries, rechargeable batteries, USB interface; optional internal accu-pack
Housing	Shock-resistant; waterproof and dustproof, according to IP 68
Dimensions	215 mm x 100 mm x 65 mm
Weight	0.7 kg
Warranty	2 years
CE	CE certified

NANOCOLOR® 500 D

Universal photometer for the lab and on the road

The photometer NANOCOLOR® 500 D is the link between our spectrophotometers and our handy compact photometers. The device contains all measurement options important in the laboratory and is therefore versatile. The combination of extremely short measurement times and accurate results render this photometer the ideal instrument for the universal use in water and wastewater analysis. It combines established and reliable technology with a robust design. The NANOCOLOR® 500 D comes in a rugged case, which provides space for the complete scope of delivery. Together with the inbuilt rechargeable battery, the NANOCOLOR® 500 D is perfectly suited for the analysis in the laboratory or on the road.

All at a glance

Its simple operation enables measurement results within seconds. The NANOCOLOR® 500 D is delivered with an extensive manual, for the evaluation of NANOCOLOR® tests kits, with easy to understand pictogram instructions, which enable a reliable test performance without a complex guidance. The backlit graphic display presents all important data at a glance. Out-of-limit results are clearly indicated.

Basic functions and programming

In addition to the pre-programmed methods, the NANOCOLOR® 500 D offers comprehensive basic functions such as absorbance, transmittance or kinetic measurements. Up to 100 methods can be individually programmed for customized applications. The calibration data required for these methods can be obtained by creating the respective calibration curves using the PC software.

Data management and documentation

The alphanumeric keypad allows entering of additional sample information for each measurement result and therefore a clean assignment of the samples. It can store up to 500 GLP-compliant results, which can be exported via the RS232 or USB interface. The measurement results of the NANOCOLOR® 500 D can be easily accessed in combination with the free of charge NANOCOLOR® data export software.

Ordering information

Description REF 919 500

Universal photometer NANOCOLOR® 500 D incl. software DVD, manual, protective covering, mains adapter, data cable, USB cable, calibration cuvette, cleaning cloth and certificate in rugged case

Good to know

The NANOCOLOR® 500 D has successfully passed the shock test according to Military Standard 810C. It therefore meets the strict requirements of the German military forces, which confirms its robustness and suitability for the mobile

Good to know

For an overview of NANOCOLOR® tube tests and rectangular test kits compatible with the NANOCOLOR® 500 D see page 88 and 94.

Approved

- Simplest operation without the need for extensive trainings
- Turn on Measure Read in less than 10 seconds
- Robust technique for high resistance

Versatile

- Flexible use in lab and on the road
- Universal cuvette slot
- Applicable in all fields of water and waste water analysis

Safe

- Barcode recognition for automatic method selection
- Automatic functional testing and auto-calibration
- GLP-conform data storage via PC-software

NANOCOLOR® 500 D	
Туре	Filter photometer with microprocessor control, self-test and auto-calibration
Optics	Automatic filter wheel with 10 interference filters Insensitive to external light for fast measurements without cuvette slot cover
Wavelengths	$345\ nm/365\ nm/436\ nm/470\ nm/520\ nm/540\ nm/585\ nm/620\ nm/690\ nm/800\ nm\ plus\ 2\ compartments\ for\ additional\ filters$
Wavelength accuracy	± 2 nm, bandwidth at half transmission 10 nm-12 nm
Light source	Tungsten lamp
Detector	Silicon photodiode
Blank value	Automatic
Measuring modes	Over 100 preprogrammed methods, 100 freely programmable methods, absorbance, transmittance, factor, kinetics, 2-point-calibration
Compatible test kits	NANOCOLOR® tube tests (see page 88) NANOCOLOR® standard tests (see page 94)
Photometric range	± 3 A
Photometric accuracy	± 1%
Stability	< 0.002 A/h
Cuvette slot	Tubes 16 mm OD Rectangular cuvettes 10 mm, 20 mm, 50 mm
Data memory	500 results, GLP-compliant
Display	Backlit graphic display, 128 x 64 pixel, all important data at a glance: Result with unit, date, time, sample number, sample location, dilution
Auto-off function	Inactive or automatic shutdown after 10 min-120 min (10 min increments)
Quality control	With NANOCONTROL NANOCHECK
Operation	Test selection via barcode technology, self-explanatory menu guidance, foil keypad
Languages	DE/EN/FR/IT/NL/ES/HU/PL/PT/CZ/SL/TR/ID/DK
Interface	USB, RS232
Update	Free of charge via Internet / PC
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	100 V-240 V~, 50/60 Hz/6 V, 3.2 Ah via built-in battery with charge regulator and mains power supply
Dimensions	227 mm x 282 mm x 105 mm
Weight	2.4 kg
Warranty	2 years
CE	CE certified

NANOCOLOR® VIS II and UV/VIS II

Spectrophotometers for high-precision analysis

The NANOCOLOR® VIS II and NANOCOLOR® UV/vis II are high-precision measurement instruments applicable in all areas of water and wastewater analysis. MACHEREY-NAGEL revolutionizes the daily laboratory work with these two new spectrophotometers, combining premium high-tech instruments with outstanding usability. With their intuitive, icon-based menu guidance, these innovative photometers can be used like a smartphone or tablet. The clearly arranged, high-resolution touch screen display makes your daily measurement routine a real pleasure.

Powerful technology

The new NANOCOLOR® spectrophotometers impress with high-class technology and optics. The spectral bandwidth of the NANOCOLOR® UV/vis II of < 2 nm allows high-precision measurements. The optical set-up and the clever technique of both devices enable measurements without protective cover; a big advantage for smooth lab processes. With a 2D barcode scanner and cuvette recognition, all steps from measuring over displaying to storing of the result are part of a fully automated sequence.

The allrounders for all requirements

As comprehensive spectrophotometers, the NANOCOLOR® VIS II and UV/VIS II, meet all requirements of your daily laboratory work. They come with well-known barcode technology for a rapid measurement of NANOCOLOR® tube tests. In addition, they offer extensive color measurement possibilities and real-time scan recording. Next the nephelometric turbidity measurement and the turbidity measurement in transmitted light, the preprogrammed MEBAK methods allow a comprehensive brewery analysis. The simple menu navigation and the icon-based pictogram instructions for the performance of cuvette tests, reduce the complexity of the daily laboratory work. The clear result screen enables an easy assignment of additional sample information and measurement results. The systematic menu guidance for the calibration of special methods allows even inexperienced users to program methods for user specific applications.

How it's done In four steps to inspection equipment monitoring 1. Call up main menu 2. Choose IQC-menu

4. Choose respective test

Good to know

Turbidity - a source of error: Turbidity is often underestimated since it is not always visually recognizable. During each measurement, the MACHEREY-NAGEL spectrophotometers automatically measure the turbidity and warn the user in case of an interfering turbidity.

Good to know

An overview of all NANOCOLOR® test kits available on the NANOCOLOR® UV/vis II and VIS II is given on page 88 and page 94.

Good to know

The test equipment offers the monitoring of the entire analysis system also extensive options for verifying the device functionality. The user can perform the test himself and save costs, an external device test is no longer needed.

3. Call up inspection equipment monitoring

Smart

- Outstanding usability due to touch screen
- 10.1" HD display for a clear overview
- Unique user experience due to icon based menu guidance

Precise

- High quality optics with reference detector technology
- Safe results due to automatic turbidity control function (NTU-check)
- Safeguarding of results via integrated IQC menu

Impressively versatile

- Future-proof interfaces
- Color measurements, turbidity measurements and scans
- Applicable in all fields of water and waste water analysis

Smart photometry

NANOCOLOR® VIS II and UV/VIS II

The next audit will be a breeze

Quality is of high importance for MACHEREY-NAGEL. Therefore, our new spectrophotometers are equipped with extensive quality control features. Besides the integrated, f.o.c. inspection equipment monitoring tools, the devices offer a variety of quality control functions for e.g. standard measurements, multiple determinations and dilution series. IQC cards are generated directly in the device and can be printed or exported for documentation purposes. Therefore, NANOCOLOR® VIS II and UV/vis II offer easy to use control options, allowing an efficient and accurate internal quality control perfectly integrated in your daily work.

Striking interface options for smart connectivity

The connection of measuring devices to laboratory information systems (LIMS) plays a more and more important role in many industries. Therefore, the NANOCOLOR® VIS II and NANOCOLOR® UV/vis II are equipped with all important interfaces (LAN, RS232, USB) for the connection to laboratory information systems. In addition, the integrated LIMS configurator allows a customized adaptation for many kinds of data for transfer. An easily accessible USB port increases the comfort of data exchange with mass storage media or the usage of a barcode reader, scanner or printer.

Ordering information

Description	REF
Spectrophotometer NANOCOLOR® VIS II incl. manual (quick start guide), touch pen, protective covering, power cable with country adapters, USB cable, USB stick, calibration cuvette, cleaning cloth and certificate	919 650
Spectrophotometer NANOCOLOR® UVIVIS II incl. manual (quick start guide), touch pen, protective covering, power cable, USB cable, USB stick, calibration cuvette, cleaning cloth and certificate	919 600

	NANOCOLOR® VIS II	NANOCOLOR ^{® uv} /vis II	
Туре	Spectrophotometer with reference detector technological	ogy (RDT)	
Light source	Halogen lamp	Halogen lamp (visible range) Deuterium lamp (UV range)	
Optics	Monochromator Insensitive to external light for fast measurements with measurements and measurements in the UV-range	thout cuvette slot cover; Cuvette slot must be covered for color	
Wavelength range	320 nm-1100 nm	190 nm–1100 nm	
Wavelength accuracy	± 1 nm		
Wavelength resolution	0.1 nm		
Wavelength reproducability	< 0.5 nm		
Wavelength calibration	Automatic		
Wavelength selection	Automatic, barcode, manual		
Scan speed	1 complete scan in less than 1 min		
Spectral bandwidth	< 4 nm	< 2 nm	
Photometric range	\pm 3.0 A in wavelength range 340 nm–900 nm	\pm 3.0 A in wavelength range 200 nm–900 nm	
Photometric accuracy	0.005 A at 0.0 A-0.5 A; 1 % at 0.5 A-2.0 A		
Photometric linearity	$< 0.5 \%$ at $\le 2 \text{ A}$; $\le 1 \%$ at $> 2 \text{ A}$		
Stray light	< 0.1 %	< 0.05 %	
Measuring modes	More than 200 preprogrammed tests and special methods, 100 optionally programmable methods, absorbance, transmittance, factor, kinetics, 2-point calibration, scan, nephelometric turbidity measurement		
Compatible test kits	NANOCOLOR® tube tests (see page 88) NANOCOLOR® standard tests (see page 94)		
Turbidity measurement	Nephelometric turbidity measurement at 860 nm, 0.	1 NTU-1000 NTU	
Cuvette slot	Test tubes 16 mm OD Rectangular cuvettes 2 mm, 10 mm, 20 mm, 40 mm	n, 50 mm	
Data memory	16 GB Micro SDHC card, 5000 measured data sets,	, 100 scans or color measurements, GLP-conform	
Display	10.1" LED backlit HD display, anti-reflective cover glass with projected capacitive touch screen (PCAP)		
Operation	Test selection via barcode technology, icon-based menu guidance, touch screen		
Languages	DE/EN/FR/ES/PT/PL/HU/NL/CZ/RO/IT		
Interfaces	LAN, 2 x USB (Host), 1 x USB (Function) and RS232	2	
Update	Free of charge via USB stick		
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-cond	densing)	
Power supply	Input: 110 V-240 V, Output: 12 V 3A	110 V-240 V, ~50/60 Hz	
Dimensions	360 mm x 400 mm x 110 mm	400 mm x 440 mm x 170 mm	
Weight	4.0 kg	6.5 kg	
Warranty	2 years		
CE	CE certified		

The NANOCONTROL equipment for quality control of the photometers is designed to support our IQC concept. It always allows the user to check the correct functionality of the devices and therefore represents a cornerstone for ensuring correct measurement results.

Checking the photometric accuracy

NANOCONTROL NANOCHECK is used as a secondary standard for inspection equipment monitoring in accordance with ISO 9001 and ISO 14001. The test solutions are controlled and documented using a reference photometer, which is monitored with primary standards (NIST standards). With only two stable color solutions, the photometers can be checked for accuracy of the absorbance reading and linearity.

Checking the turbidity calibration

NANOCONTROL NANOTURB is a turbidity standard for nephelometric turbidity measurements for our photometers. The solutions are used as a primary standard for calibrating and checking the nephelometric turbidity unit in accordance with ISO 7027. The test solutions are ready for immediate use and must only be placed into the photometer. Dilution steps or contact with chemicals are avoided effectively.

Certificate With the NANOCONTROL NANOCHECK evaluation sheet the requirements for quality assurance can be fulfilled and it serves as validation against authorities and

supervisors.

Ordering information

Description	REF	Shelf life	GHS
NANOCONTROL NANOCHECK test solutions for the determination of photometric accuracy for NANOCOLOR® photometers, secondary standard for inspection equipment monitoring in accordance with ISO 9001	925 701	2 years	
NANOCONTROL NANOTURB turbidity standard with 4 tubes (1, 4, 100, 400 NTU) for the nephelometric turbidity calibration for NANOCOLOR® spectrophotometers and PF-12 ^{Plus} , secondary standard for inspection equipment monitoring in accordance with ISO 9001	925 702	8 months	

GHS: Globally harmonized system: This product contains harmful substances, which must be labeled as hazardous. For detailed information, please see the SDS.

Accessories for photometers

The complete analytics from a single source

MACHEREY-NAGEL photometers fulfill all requirements for daily laboratory analysis. In addition, many accessories are available to be equipped optimally for special applications. The sipper pump NANOCOLOR® FP-100 for instance allows time savings and increased accuracy for standard tests with high sample throughput. The user receives all accessories from a single source. Compatibility with the different photometers is therefore ensured at all times.

Ordering information

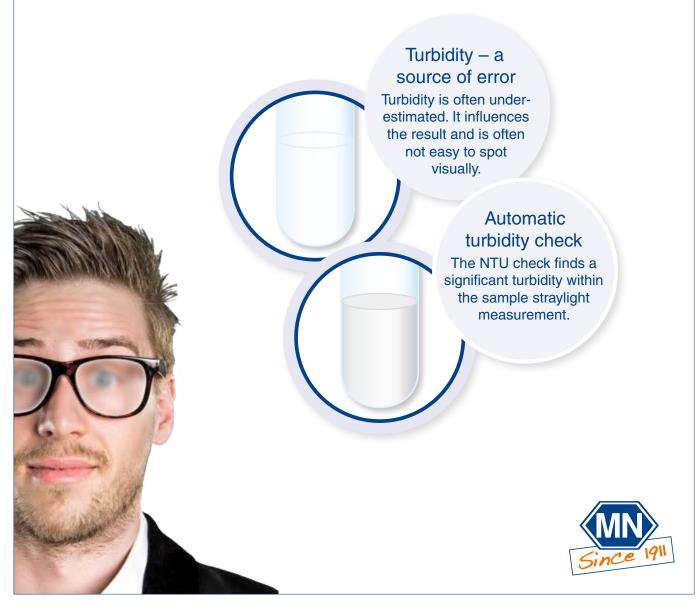
Description	REF	Content
Transport cases for photometers		
■ Transport case for spectrophotometer NANOCOLOR® UV/vis II	919 624	1 piece
Transport case for spectrophotometer NANOCOLOR® VIS II	919 652	1 piece
Special filters for photometers NANOCOLOR® 500 D/400 D/350 D/PF-12 ^{Plus} /PF-12		
Interference filter 412 ± 2 nm (incl. installation) for tube test NANOCOLOR® Formaldehyde 10	919 841.2	1 piece
Special filter incl. ex-factory installation (wavelengths on request)	919 850.2	1 piece
Handheld scanner		
■ Handheld scanner for NANOCOLOR® spectrophotometers	919 134	1 piece
Sipper		
Sipper pump NANOCOLOR® FP-100 for NANOCOLOR® spectrophotometers incl. power supply, support stand, tube, intake needle and RS232-cable	919 140	1 piece
RS232-cable for the connection of NANOCOLOR® FP-100 with the NANOCOLOR® spectrophotometers	919 775	1 piece
Intake needle for NANOCOLOR® FP-100	919 142	1 piece
Support stand for NANOCOLOR® FP-100	919 143	1 piece
Pedal for NANOCOLOR® FP-100	919 144	1 piece
Manuals		
Manual (quick start guide) for NANOCOLOR® VIS II and UV/vis II	919 601	1 piece
Manual for NANOCOLOR® 500 D	919 501	1 piece
Manual for photometer PF-12 ^{Plus}	919 252	1 piece
Manual for photometer PF-3	919 392	1 piece
■ VISOCOLOR® ECO test instructions for photometer PF-3	934 001	1 piece
VISOCOLOR [®] ECO test instructions for photometer PF-12 ^{Plus}	931 503	1 piece
Lamps		
Halogen lamp for NANOCOLOR® VIS II and W/vis II	919 604	1 piece
Deuterium lamp for NANOCOLOR® UV/vis II	919 603	1 piece
Tungsten lamp for NANOCOLOR® 500 D / 400 D / 350 D / 300 D / 250 D / PT-3	919 787	1 piece
Cuvettes		
Calibration cuvette for NANOCOLOR® photometer	916 908	1 piece
Flow cuvette, Quartz glass, 2 mm optical path, for NANOCOLOR® UV/v/s and UV/v/s II	919 127	1 piece
Flow cuvette, Quartz glass, 10 mm optical path, for NANOCOLOR® uv/vis II	919 626	1 piece
Flow cuvette, optical glass, 10 mm optical path, for NANOCOLOR® VIS, VIS II and UV/vis II	919 158	1 piece
Flow cuvette, Quartz glass, 50 mm optical path, for NANOCOLOR® VIS, VIS II and W/vis II	919 149	1 piece
Quartz glass cuvette, 2 mm optical path, for NANOCOLOR® UV/vis and UV/vis II	919 122	1 piece
Quartz glass cuvette, 10 mm optical path, for NANOCOLOR® UV/v/s and UV/v/s II	919 120	1 piece
Quartz glass cuvette, 50 mm optical path, for NANOCOLOR® UV/vis and UV/vis II	919 121	1 piece

¹⁾ Required additionally: Cable set, REF 919 133

²⁾ Required additionally: Mains adaptor, REF 919 06
³⁾ Required additionally for PF-3: Mini USB-cable, REF 919 390

Accessories for photometers

Description	REF	Content
Glass cuvettes, 5 mm optical path	919 32	2 pieces
Glass cuvettes, 10 mm optical path	919 33	2 pieces
Glass cuvettes, 20 mm optical path	919 34	2 pieces
Glass cuvette, 50 mm optical path	919 35	1 piece
Semi-micro cuvette, 50 mm optical path	919 50	1 piece
Lids for glass cuvettes, 10 mm	919 41	2 pieces
Lids for glass cuvettes, 50 mm	919 40	2 pieces
Disposable plastic cuvettes, 10 mm optical path	919 37	100 pieces
Fixing for 10 mm cuvette for NANOCOLOR® VIS II, W/v/s and W/v/s II	919 136	1 piece
Test tubes, 16 mm OD	916 80	20 pieces
Cover		
Cover for cuvette slot for NANOCOLOR® UV/vis II	919 606	1 piece
Cover for cuvette slot for NANOCOLOR® VIS II	919 654	1 piece
Protective coverings		
Protective covering for NANOCOLOR® UV/vis II	919 605	1 piece
Protective covering for NANOCOLOR® VIS II	919 651	1 piece
Protective covering for NANOCOLOR® 500 D / 400 D / 350 D	919 18	1 piece
Printer		
NANOCOLOR® thermal printer for photometer NANOCOLOR® VIS II and UV/vis II (incl. mains adapter and manual)	919 655	1 piece
NANOCOLOR® thermal printer for NANOCOLOR® UV/vis 1) 2) /VIS 1) 2) /500 D / 400 D / 350 D / 300 D / 250 D and photometer PF-11 2) (incl. printer cable, without mains adapter)	919 16	1 piece
Printer paper rolls for NANOCOLOR® thermal printer for NANOCOLOR® VIS II / UV/vis II, 79 mm width, core 12 mm, OD 80 mm	919 656	3 pieces
Software		
NANOCOLOR® software for Linus/500 D/400 D/350 D/300 D/250 D/PF-12 ^{Plus} /PF-12/BioFix® Lumi-10	919 02	1 piece
Accessories for data transfer		
USB cable AA for NANOCOLOR® 500 D	919 686	1 piece
USB cable AB for NANOCOLOR® VIS/VIS II/W/vis/W/vis II/VARIO 4/VARIO C2 and photometers PF-12 ^{Plus} /PF-12	919 687	1 piece
LAN cable (1.5 m) for NANOCOLOR® VIS II and W/v/s II	919 682	1 piece
Mini USB cable for photometer PF-3 and VARIO Mini	919 390	1 piece
Zero modem cable, serial, 2x9 pin SUB-D socket, for NANOCOLOR® 500 D/400 D/350 D/300 D/250 D/PT-3/PF-10/PF-11 and BioFix® Lumi-10	919 773	1 piece
Adaptor, 9 pin SUB-D-plug to 25 pin SUB-D socket	919 681	1 piece
NANOCOLOR® USB stick	919 123	1 piece
Power supply		
Mains adaptor for NANOCOLOR® VIS, VIS II and VARIO Mini	919 156	1 piece
■ USB mains adaptor for photometer PF-12 ^{Plus} /PF-12/PF-3 ³⁾	919 220	1 piece
Mains adaptor for NANOCOLOR® 500 D/400 D/350 D/300 D/250 D/PT-3/PF-11/FP-100; prim. 100 V-240 V ~; sec. 9 V=-/1500 mA	919 06	1 piece
Rechargeable battery for NANOCOLOR® 500 D/400 D/350 D	919 914	1 piece
Rechargeable battery pack for photometer PF-12 ^{Plus} /PF-12	919 201	1 piece
Rechargeable battery pack for photometer PF-3	919 391	1 piece
		1


²⁾ Required additionally: Mains adaptor, REF 919 06
³⁾ Required additionally for PF-3: Mini USB-cable, REF 919 390

NTU-check Automatic turbidity check for tube tests

Maximum measurement safety

- Innovative and unique solution for turbidity problems
- Automatic turbidity check for tube tests
- Turbidity displayed directly in NTU according to EN ISO 7027
- Warns in case of potential interferences

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Heating blocks for reliable digestions

The NANOCOLOR® heating blocks enable a fast and safe performance of all kinds of sample digestions required in water and waste water analysis. Standard parameters for routine digestions such as COD, TOC, total nitrogen, total phosphorus and metals are pre-programmed in the heating blocks and help the user to avoid mistakes.

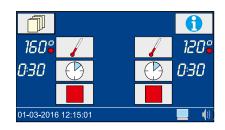
The small one and the big one

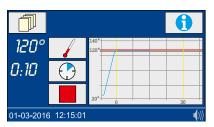
The heating block NANOCOLOR® VARIO C2 enables the simultaneous digestion of up to 12 samples. For a higher sample throughput the NANOCOLOR® VARIO 4 is perfectly suited, as it allows up to 24 simultaneous digestions in two separately controllable heating units. Therefore, MACHEREY-NAGEL offers the appropriate heating block to each user for routine analysis in the laboratory. The NANOCOLOR® heating blocks are equipped with lockable protective lids and a touch protection for increased work safety. The NANOCOLOR® VARIO C2 M heating block with two 22 mm and eight 16 mm holes is available for the digestion of large sample volumes as part of metal analysis.

Extremely versatile and maximally secure

In addition to the preprogrammed temperatures and heating times, a large number of user-specific digestion methods can be stored. The USB and RS232 interfaces allow an easy connection to a PC and enable the convenient linkage to the NANOCONTROL inspection equipment monitoring tools. The graphical representation of the heating curves enhances transparency about the temperature stability. The electronic overtemperature sensor protects the heating block from overheating.

Temperature testing and calibration


A temperature test can be performed using the NANOCOLOR® T-Sets to safeguard results against authorities and supervisors. The free PC software of the heating blocks facilitates checking of temperatures and the creation of the respective reports. After measurement data transfer via the interfaces using the PC software, the testing certificate is created directly, which ensures a GLP-compliant documentation of all equipment testing.


Suitable for all NANOCOLOR® digestion methods


Application	Temperature	Time
COD according to DIN ISO 15705	148 °C	120 min
High-speed COD	160 °C	30 min
TOC	120 °C	120 min
Total nitrogen	120 °C	30 min
Total phosphorus	120 °C	30 min
Organic acids	100 °C	10 min
Total metals	120 °C	30 min
AOX	120 °C	30 min
Hydrocarbons	148 °C	120 min
Programmable, user-defined programs	40 °C–160 °C	0 h:01 min-9 h:59 min

Good to know

The NANOCOLOR® T-Set is a simple and unique tool for inspection equipment monitoring of MACHEREY-NAGEL heating blocks by the user himself. For further information about the NANOCOLOR® T-Set see page 140.

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Easy

- User-friendly touch screen
- Intuitive usage via icons
- Operation without the need for intensive training

Fast

- All important parameters within 30 minutes
- Extremely short heating-up times
- Call up of heating programs in a matter of seconds

Secure

- High temperature stability
- Graphically visualized heating curves
- Internal quality control via NANOCOLOR® T-Set

Ordering information

Description	REF
■ Heating block NANOCOLOR® VARIO 4 with two blocks with separate control, 2 x 12 bores for test tubes of 16 mm OD, incl. power cable, two separate protective coverings, manual, data cable, software DVD and certificate	919 300
■ Heating block NANOCOLOR® VARIO C2 12 bores for test tubes of 16 mm OD, incl. power cable, protective covering, manual, data cable, software DVD and certificate	919 350
■ Heating block NANOCOLOR® VARIO C2 M – version for metal analysis, with large bores – 8 bores for test tubes of 16 mm OD, 2 bores for reaction vessels of 22 mm OD, incl. power cable, protective covering, manual, data cable, software DVD and certificate	919 350.1

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Type	Heating blocks for chemical-analytical digestions
Number of bores	2 x 12 of 16 mm OD (<i>VARIO 4</i>) 12 of 16 mm OD (<i>VARIO C2</i>) 8 of 16 mm OD + 2 of 22 mm OD (<i>VARIO C2 M</i>)
Display	Colored, backlit LCD touch screen
Operation	Icon-based menu guidance via touch screen
Temperatures	6 preprogrammed temperatures 70 °C/100 °C/120 °C/148 °C/150 °C/160 °C 6 free memory locations for individual temperature settings
Temperature range	40 °C-160 °C (1 °C increments)
Temperature stability	± 1 °C (according to DIN, EN, ISO and EPA methods)
Warm-up time	From 20 °C to 160 °C within 10 minutes
Heating times	5 preprogrammed heating times 10 min/30 min/60 min/120 min/cont. 7 free memory locations for individual heating times
Time range	0 h:01 min-9 h:59 min (1 °C increments)
Safety	Replaceable safety covers as contact protection Lockable protective lids Overheating protection
Interfaces	Bidirectional serial RS232, USB A (function) and USB B (Host)
Internal quality control (IQC)	With NANOCOLOR® T-Set (REF 919 917) and NANOCOLOR® USB T-Set (REF 919 921) Optional fully automatic calibration and generation of a test certificate for instrument control and monitoring
Languages	DE/EN/FR/ES/HU/PL/CZ/TR/DK
Update	Free via Internet /PC and USB stick
Operating range	10 °C-40 °C; max. 80 % relative humidity (non-condensing)
Power supply	110 V-230 V~, 50/60 Hz
Power consumption	300 / 550 W (<i>VARIO 4</i>) 150 / 300 W (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Dimensions	290 mm x 287 mm x 146 mm (<i>VARIO 4</i>) 169 mm x 282 mm x 146 mm (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Weight	approx. 3.2 kg (<i>VARIO 4</i>) approx. 2.0 kg (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Warranty	2 years
CE	CE certified

Compact heating block for mobile analysis

Sample digestion is an essential step in the determination of a couple of important parameters in photometric water analysis, but is usually only carried out in a laboratory. The new NANOCOLOR® VARIO Mini now gives the ability to perform sample digestions on-site or on the road. This guarantees a mobile and safe performance of all sample digestions required in the water and waste water analysis. The compact size and the flexible power supply, e.g. through the power port of a car, ease the use and offer a maximum flexibility for the everyday analysis.

Simply clever

The NANOCOLOR® VARIO Mini has six positions for test tubes with an outer diameter of 16 mm and therefore offers the opportunity to examine small numbers of samples directly on the spot. Furthermore, the device impresses with a temperature stability of \pm 1 °C. All digestions of the MACHEREY-NAGEL test kits can easily be conducted using the pre-programmed temperatures and heating times. MACHEREY-NAGEL offers the new NANOCOLOR® USB T-Set as a reliable inspection equipment monitoring tool to ensure the temperature stability and the accuracy of the temperature calibration of the NANOCOLOR® VARIO Mini. It allows the easy temperature checking and calibration of the heating block and thereby results in an always accurate and reliable digestion of the sample.

Ordering information

Description	REF
Heating block NANOCOLOR® VARIO Mini,	919 380
6 bores for test tubes of 16 mm OD, incl. power cable, protective covering, manual	
and certificate	

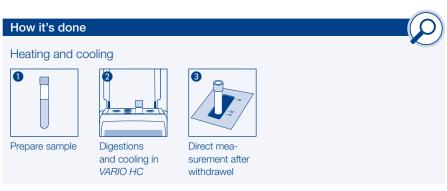
Good to know

No power supply available?
The NANOCOLOR® VARIO Mini can be operated with an external battery as the only heating block device of its class. For the comfortable transport MACHEREY-NAGEL provides compact and complete mini laboratories as case solutions for direct analysis at the place of sampling.

NANOCOLOR® VARIO Mini	
Туре	Heating block for chemical and analytical digestion
Number of bores	6 of 16 mm OD
Display	Graphic display 128 x 64 pixel
Operation	Icon-based menu guidance with four buttons
Temperatures	70 °C, 100 °C, 120 °C, 148 °C, 150 °C, 160 °C
Temperature stability	± 1 °C (according DIN, EN, ISO and EPA methods)
Warm-up time	From 20 °C to 160 °C within 25 minutes (at 20 °C ambient temperature)
Heating times	30 min, 60 min, 120 min
Safety	Safety cover with lockable protective lid and overheating protection
Interfaces	Mini-USB-OTG (On-The-Go)
Internal quality control (IQC)	With NANOCOLOR® USB T-Set (REF 919 921) Optional fully automatic calibration and test certificate generation
Update	Free via Internet /PC and USB stick
Operating range	10 °C-40 °C; max. 80 % relative humidity (non-condensing)
Power supply	12 V, 5 A
Power consumption	60 W
Dimensions	105 mm x 125 mm x 170 mm
Weight	670 g
Warranty	2 years
CE	CE certified

NANOCOLOR® VARIO HC

Heating block for fast digestions


The factor time plays a crucial role in many laboratories when conducting sample digestions. The NANOCOLOR® VARIO HC enables the user to digest all important parameters in just 30 minutes. The usually very slow cooling down of the cuvettes after digestion is greatly accelerated in the NANOCOLOR® VARIO HC by the active cooling unit. Hereby the test tubes are ready for the measurement or further analysis steps shortly after the digestion has ended.

Simply fast

Thanks to the intelligent linkage of heating-up, digestion and cooling-down the NANOCOLOR® VARIO HC allows the performance of a COD test in less than 45 minutes. The readily prepared cuvettes are directly inserted into the cold heating block, which means an additional time saving for the user as the waiting of the heating process is omitted.

Approved and versatile

In addition to the cooling function, the NANOCOLOR® VARIO HC comes with all features provided by our proven heating blocks NANOCOLOR® VARIO 4 and VARIO C2. Naturally, this includes the possibility of checking and calibrating the temperature with the NANOCOLOR® T-Sets, thus fulfilling the requirements of analytical quality control. The safety of the user is as important as accurate results. The protection lid of the NANOCOLOR® VARIO HC locks electronically during digestion. The operation of the heating block and the input of digestion programs are carried out via a user-friendly touch screen.

Good to know Both, the temperature of the cooling process as well as the ventilation speed can be individually adjusted by the user

Ordering information

Description	REF
Heating block NANOCOLOR® VARIO HC – with cooling function –	919 330
12 bores for test tubes of 16 mm OD and fan, incl. power cable, protective covering, manual, data cable, software DVD and certificate	

Technical data

NANOCOLOR® VARIO HC	
Туре	Heating block for chemical-analytical digestion
Number of bores	12 of 16 mm OD
Display	Colored, backlit LCD touch screen
Operation	Icon-based menu guidance via touch screen
Temperatures	6 preprogrammed temperatures 70 °C/100 °C/120 °C/148 °C/150 °C/160 °C 6 free memory locations for individual temperature settings
Temperature range	40 °C-160 °C (1 °C increments)
Temperature stability	± 1 °C (according to DIN-, EN-, ISO- and EPA-methods)
Warm-up time	from 20 °C to 160 °C within 10 minutes
Heating times	5 preprogrammed heating times 10 min/30 min/60 min/120 min/cont. 7 free memory locations for individual heating times
Time range	0 h:01 min-9 h:59 min (increments 0 h:01 min)
Safety	Replaceable safety covers for contact protection Lockable protective lids Overheating protection
Interfaces	Bidirectional serial RS232, USB A (function) and USB B (Host)
Internal quality control (IQC)	With NANOCOLOR® T-Set (REF 919 917) and NANOCOLOR® USB T-Set (REF 919 921) Optional fully automatic calibration and test certificate generation
Languages	DE/EN/FR/ES/HU/PL/CZ/TR/DK
Update	Free via Internet and USB-stick
Operating range	10 °C-40 °C; max. 80 % relative humidity (non-condensing)
Power supply	110 V–230 V~, 50/60 Hz
Power consumption	150/550 W
Dimension	290 mm x 287 mm x 146 mm
Weight	approx. 3.2 kg
Warranty	2 years
CE	CE certified

Heating blocks www.mn-net.com 139

NANOCOLOR® T-Set and USB T-Set

Analytical quality control for the entire analysis system

The unique inspection equipment NANOCOLOR® T-Set is an electronic temperature sensor, which is suitable for the temperature control and automatic calibration of all NANOCOLOR® heating blocks. The user can check the heating blocks independently with the NANOCOLOR® T-Set for internal quality control purposes. For this reason the NANOCOLOR® T-Set is an important building block for a comprehensive analytical quality assurance.

Independent self-control

By a target-actual comparison, the temperatures in the heating blocks can be tested quickly and easily. All programmed temperatures are measured, registered and stored in the heating block by the NANOCOLOR® T-Set. This tool also enables an automatic calibration of the heating blocks. Our customers appreciate the NANOCOLOR® T-Set, as it allows a cost-effective and independent monitoring of their own heating block.

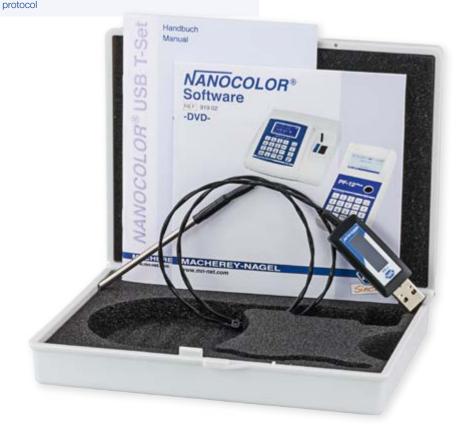
Data transfer and documentation

After completion of the temperature control or calibration, the collected data can be transferred to a computer easily via the RS232 or USB port. The free of charge NANOCOLOR® T-Set PC software enables a GLP-compliant documentation and the creation of direct test certificates.

Now with temperature display

program

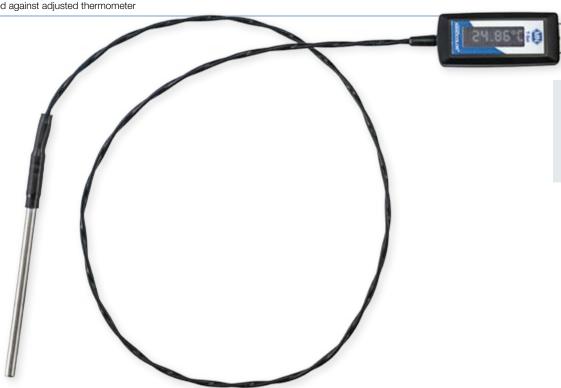
The new NANOCOLOR® USB T-Set is a advancement of the established NANOCOLOR® T-Set, extended by a LED display to control the measured temperature. Therefore, temperature measurements can now be carried out independent of the heating block.


Good to know

The NANOCOLOR® T-Sets can be used also for external temperature measurements, e.g. for the determination of the sample temperature.

Good to know

The temperature display of the NANOCOLOR® USB T-Set can be flipped by tapping on the edge of the device. Therefore, an optimal reading is always guaranteed.



NANOCOLOR® T-Set and USB T-Set

Ordering information

Description	REF
NANOCOLOR® T-Set for electronic temperature control and calibration of the heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO 3 / VARIO compact	919 917
NANOCOLOR® USB T-Set for electronic temperature control and calibration of the heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO Mini 1)	919 921
⁻¹ Additional adapter for USB-T-Set (REF 919 937) is required.	

	T-Set	USB T-Set
Туре	Electronic thermal sensor for temperature control, calibra monitoring	ation and generation of a test certificate for inspection equipment
Detector	PT 1000 (95 mm length x 4 mm Ø)	
Display	-	LED display
Operation	Via touch screen of the heating blocks and the T-Set sof	ftware
Temperature range	0 °C-200 °C	
Precision	± 1 °C	
Accuracy	± 0.2 °C	
Long term stability	± 0.1 °C	
Interface	RS232	USB A
Operating range	10 °C-40 °C max. 80 % relative humidity (non-condensi	ng)
Power supply	Via RS232	Via USB A
Power consumption	Max. 20 mW	
Dimensions	75 cm (length)	73 cm (length)
Weight	Approx. 60 g	
Warranty	2 years	
CE	CE certified	
Certificate	Calibrated against adjusted thermometer	

Accessories for heating blocks

The complete analytics from a single source

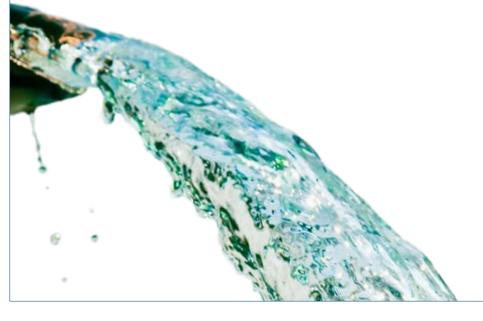
MACHEREY-NAGEL heating blocks represent an important corner stone of the NANOCOLOR® analytical system. By the perfect combination of test kits, heating blocks and photometers, the user is well equipped for daily laboratory analysis. In addition to the digestion for the classical parameters such as COD and phosphate, some customers require special solutions, e.g. for the digestion of metals using NanOx Metal. The accessories required for this purpose are available as a complete package from MACHEREY-NAGEL. For an overview of available digestion reagents see page 104. All this ensures the compatibility of the equipment and a reliable analysis.

Good to know

The NANOCOLOR® VARIO Mini can be operated independent of the grid with a car adapter cable (REF 919 938) from our heating block accessories.

Accessories

Description	REF	Content
Acessories for temperature control of heating blocks	NEF	Content
T-Set adaptor 16 mm	919 924	1 piece
T-Set adaptor 13 mm	919 925	1 piece
■ USB-serial-Adaptor for heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO 3 / VARIO compact and NANOCOLOR® T-Set	919 926	1 piece
■ USB-T-Set adaptor for NANOCOLOR® VARIO Mini	919 937	1 piece
Accessories for digestions in heating blocks		
■ Protective covering for NANOCOLOR® VARIO 4 / VARIO C2 / / VARIO C2 M / VARIO HC, transparent	919 310	1 piece
Protective covering with bores for TOC-tests for NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC, transparent	919 309	1 piece
■ Protective covering for NANOCOLOR® VARIO Mini, transparent	919 381	1 piece
Safety cover for NANOCOLOR® VARIO 4 / VARIO C2 / VARIO HC / VARIO 3 / VARIO compact	916 598	1 piece
■ Reducing adaptors 16 → 13 mm for NANOCOLOR® heating blocks	916 910	8 pieces
■ Reducing adaptors 22 → 16 mm for NANOCOLOR® heating blocks	919 916	2 pieces
Decomposition apparatus including tube for sample decomposition, reducing adaptor and absorption attachment	916 29	1 piece
■ Tubes for sample decomposition 22 mm OD, NS 19/26 with glass stopper	916 66	2 pieces
Condenser 200 mm, type KS with 3 m PE tubing, NS 19/26 bottom, NS 29/32 top	916 67	1 piece
Absorption attachment for condenser NS 29/32	916 68	1 piece
Reaction tubes 16 mm OD	916 80	20 pieces
Reaction tubes 22 mm OD	916 22	2 pieces
Power supply 1)		
Car adapter cable for NANOCOLOR® VARIO Mini	919 938	1 piece
Mains adaptor for NANOCOLOR® VIS, NANOCOLOR® VIS II and VARIO Mini	919 156	1 piece
Accessories for data transfer		
USB cable AB for NANOCOLOR® W/vis/W/vis II/VIS/VIS II/VARIO 4/VARIO C2/VARIO C2 M and PF-12/PF-12 ^{Plus}	919 687	1 piece
Mini USB cable for compact photometer PF-3 and NANOCOLOR® VARIO Mini	919 390	1 piece
1) For information about an external battery for NANOCOLOR® VARIO Mini, please contact MACHEREY-NAGEL.		


NANOCOLOR® COD test kits Safe, safer, the safest

Reliable COD analysis

- No risk of leaking gases
- Minimum quantity of hazardous chemicals
- Hg-free version available
- 12 measurement ranges available for all requirements and demands

QUANTOFIX® Relax

Reflectometer for evaluation of test strips

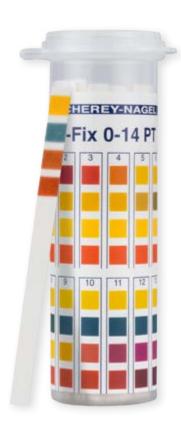
The QUANTOFIX® Relax is the ideal device for the objective evaluation of our QUANTOFIX® test strips. It combines the simplicity of test strips with the safety of instrumental analysis and thus the best out of these two worlds. The QUANTOFIX® Relax does not require any special strips, but evaluates the normal pH-Fix and QUANTOFIX® test strips. Therefore entrance into instrumental analysis is very simple; the same strip can be used for visual and instrumental evaluation.

Excellent usability

All functions of the device can be selected with the touch screen display. Therefore, the operation is simple and intuitive, without the need for extensive training. The auto-start function initiates the measurement as soon as the test strip is placed on the strip holder. Therefore, it is not necessary to touch the device for performing a measurement. Contaminations are reliably avoided. Frequently used parameters can be stored as favorites. Simple tapping can quickly access these favorites during operation.

Quantitative results

The optics of the QUANTOFIX® Relax has been proven for years in medical technology and supplies secure and standardized values. Thereby an accuracy of \leq 10 % is achieved for many parameters; a hardly achieved level in the analysis of test strips, yet. The evaluation with the QUANTOFIX® Relax is not interfered by external factors and is therefore absolutely objective and precise. The estimation of measured values between the gradations of the scale is omitted.


Documentation and data transfer

The QUANTOFIX® Relax allows the assured documentation of analytics with test strips. Results are printed immediately after the measurement. The printout can be e.g. appended to a production protocol or kept for later quality controls. The transmission to an information system can be realized easily. In addition, the data are stored in the device and can be simply read out or printed again later on.

Good to know

For an overview of all the parameters and pH-Fix test strips available on the QUANTOFIX® Relax, please refer to page 52 and 60.

Ordering information

Description	REF
Reflectometer QUANTOFIX® Relax for evaluation of QUANTOFIX® test strips incl. power supply, adapter, manual, 1 roll of printer paper and certificate	913 46

Accessories

Description	REF	Content
■ Transport case for reflectometer QUANTOFIX® Relax for individual combination with 1 QUANTOFIX® Relax, 3 rolls of printer paper, 6 QUANTOFIX® tubes, 6 batteries, power supply, manual and accessories	930 889	1 piece
■ Printer paper for QUANTOFIX® Relax	930 65	5 pieces
■ Barcode scanner for QUANTOFIX® Relax	930 74	1 piece
Power supply for QUANTOFIX® Relax	930 995	1 piece

Objective

- High-quality optics
- Independent from external light and subjective color perception
- Standardized reaction times

Easy

- Intuitive use via touch screen
- Contactless measurement due to auto-start function
- Favorites list for the most important parameters

Safe

- Reproducible results independent of the user
- Printout of results for optimized documentation
- Accuracy for many parameters ≤ 10 %

Technical data

QUANTOFIX® Relax	
Туре	Reflectometer with microprocessor control, self-test and auto-calibration
Calibration	Automatic, self calibrating
Capacity	50 strips per hour
Data storage	200 results
Display	LCD display with touch screen
Operation	alphanumeric input via touch screen
Interface	RS232, USB B (Host), PS/2 for connection of a keyboard or barcode scanner
Languages	DE/EN/FR/ES/IT/PT/PL/TR/HU
Update	Free via Internet / PC
Operating range	10 °C-40 °C, max. 80 % relative humidity (non-condensing)
Power supply	100 V-240 V~, optional with 6 AA batteries
Dimensions	200 mm x 160 mm x 75 mm
Weight	710 g (without batteries and power supply)
Warranty	2 years
CE	CE certified

BioFix® Lumi-10

Compact luminometer for mobile use

The BioFix® Lumi-10 is a compact luminometer for the measurement of bio and chemical luminescence reactions with constant light emission. Due to its size it is ideally suited for the use in the laboratory or on the road and can be operated with a power supply as well as rechargeable batteries.

Incredibly versatile

Thanks to its highly sensitive detector (Ultra-Fast Single Photon Counter) the BioFix® Lumi-10 can be used for a variety of applications. This includes amongst others bio toxicity tests, ATP- and biomass determinations, reporter-gene assays, luminescence immunoassays as well as NAD(P)H measurements.

Individually programmable

The BioFix® Lumi-10 has six individually adjustable measurement protocols and a data memory for up to 2000 results. It provides the opportunity for single, multiple and extensive screening measurements. The results are optionally displayed in % inhibition, % stimulation or RLU (relative light units). The user can set the particular measurement parameters such as incubation time or measurement time individually. By a previous definition of detection limits, the results can be automatically classified by the device. There are already pre-programmed test methods available for the determination of luminescent bacteria toxicity tests and ATP tests.

Ordering information

Description	REF
BioFix® Lumi-10	940 008
incl. manual, rack, cuvettes and spare adaptor	

Good to know

Thanks to six individually adjustable measurement protocols, the $\mathsf{BioFix}^{\texttt{®}}$ Lumi-10 is extremely versatile and suitable for many applications.

Accessories

Description	REF	Content
Absorbance color correction cuvettes with 100 aspirators	940 006	4 pieces
Glass cuvettes 12 mm OD	916 912	690 pieces
Rack for glass cuvettes 12 mm OD, 5 x 10 positions	945 013	1 piece
■ Manual BioFix® Lumi-10, German	940 014	1 piece
■ Manual BioFix® Lumi-10, English	940 014.en	1 piece
Mains adaptor	940 009	1 piece

Technical data

echnical data	
BioFix [®] Lumi-10	
Туре	Luminometer
Optics	Ultra-Fast Single Photon Counter
Wavelengths range	380 nm–630 nm
Software	Microprocessor software
Measuring modes	3 preprogrammed tests, 6 free programmable methods, % inhibition, % stimulation, RLU
Cuvette holder	Cuvettes 12 mm OD
Data storage	2000 results
Display	Backlit graphic display (128 x 64 pixel)
Operation	Foil covered push buttons
Languages	DE, EN
Interface	RS232 interface for data transfer to the PC or printer
Operating range	15 °C–30 °C
Power supply	Mains adaptor: 230 V/50 Hz, 115 V/60 Hz, batteries
Rechargeable batteries	3 Rechargeable batteries: NiCd R14/C/Baby/UM2 batteries; 1600 mAh
Dimensions	170 mm x 150 mm x 280 mm
Weight	2 kg (incl. batteries)
Warranty	2 years

Mobile mini-labs

REF 921 10 pH-Fix 0-14

Reagent cases

Reagent cases for special applications	150
Reagent cases for individual solutions	154
Accessories for reagent cases	156

Compact laboratories for mobile analysis

MACHEREY-NAGEL reagent cases are flexible tools for all areas of water and soil analysis. Catering to our customer needs, we offer a large number of prepacked reagent cases with and without photometer which can be used for a wide area of applications.

The rugged cases with premium foam inlays allow a fast and direct analysis at the point of interest. All needed test instructions as well as analytical accessories are already included for especially easy and convenient handling. Particular chemical knowledge or experience is not required to run any of the tests or to use the cases effectively. The color-coded bottles prevent a mixing-up of the reagents.

Consumed reagents can be replaced simple and cost-effective with refill packs.

Reagent cases for water analysis

The reagent cases together with the VISOCOLOR® tests give water attendants, fish farmers and other persons that are interested in water analysis the possibility to determine important analytical values for evaluation of water quality within a short time.

The prepacked reagent cases can be used for a wide area of applications like swimming pools, drinking water analysis, schools, monitoring of fishing waters and of course for general water analysis.

Good to know

The VISOCOLOR® School reagent case is especially designed for schools. All reagents are approved to be used in schools in Germany (GUV-SR 2004

Ordering information

Reagent case	REF	Dimensions	Application	GHS	PF-3	PF-12 ^{Plus}	Test
■ VISOCOLOR® ECO Reagent case	931 301	340 x 275 x 83 mm	General	1			VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Carbonate hardness VISOCOLOR® ECO Total hardness VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 4.0–9.0 VISOCOLOR® ECO Phosphate
■ VISOCOLOR® Reagent case	931 304	450 x 360 x 140 mm	General	•			VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Nitrite VISOCOLOR® ECO pH 4.0-9.0 VISOCOLOR® ECO Phosphate VISOCOLOR® HE Alkalinity AL 7 VISOCOLOR® HE Total hardness H 20 F VISOCOLOR® HE Oxygen SA 10
■ VISOCOLOR® Reagent case for environ- mental analysis	914 353	450 x 360 x 140 mm	General			•	VISOCOLOR® ECO Ammonium 15 VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 4.0-9.0 VISOCOLOR® ECO Phosphate VISOCOLOR® HE Carbonate hardness C 20 VISOCOLOR® HE Total hardness H 20 F
■ VISOCOLOR® Reagent case with PF-3 Pool (Cl₂ liquid)	934 118	340 x 275 x 83 mm	Swimming pool	•	•		VISOCOLOR® ECO Alkalinity TA VISOCOLOR® ECO Chlorine 2, free + total VISOCOLOR® ECO Cyanuric acid VISOCOLOR® ECO pH 6.0-8.2
■ VISOCOLOR® Reagent case with PF-3 Pool (Cl₂ solid)	934 119	340 x 275 x 83 mm	Swimming pool	•	•		VISOCOLOR® ECO Alkalinity TA VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Cyanuric acid VISOCOLOR® ECO pH 6.0-8.2

GHS: Global harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Reagent cases for soil analysis

Thorough analysis is the basis to support and maintain healthy, productive and biologically active soil. To effectively and efficiently plan all measures that affect the soil (fertilization, liming, etc.) it is crucial to determine the important soil parameters first.

The VISOCOLOR® reagent cases for soil analysis are the perfect companions for economical, fast and convenient soil analysis, both in the field or in the laboratory. The user can choose between a reagent case version with or without compact photometer PF-3 Soil, which was especially developed for soil analysis.

Both case versions contain additional analytical tools, such as scale, sieve, etc. as well as predosed solutions for the production of necessary soil extracts.

Good to know

The reagent cases VISOCOLOR® School, VISOCOLOR® Fish and the VISOCOLOR® reagent case for soil analysis contain detailed manuals. Besides further background information about the most important parameters also information about reaction equations and of the reaction basis are included.

Measuring range (visual)	Measuring range (photometric)	Number of tests	Reagent cases				
$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \text{ mg/L NH}_4^+$	_	50	VISOCOLOR® ECO				
1 drop equals 1.25 °e	_	100	Reagent case				
1 drop equals 1.25 °e	_	110	_				
$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{ mg/L NO}_3^-$	_	110					
$0 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.5 \text{ mg/L NO}_2^-$	_	120					
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	_	450					
$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \text{ mg/L PO}_{4}\text{-P}$	-	80					
0 · 0.2 · 0.3 · 0.5 · 0.7 · 1 · 2 · 3 mg/L NH ₄ ⁺	_	50	VISOCOLOR®				
$0 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.5 \text{ mg/L NO}_2^-$	_	120	Reagent case				
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	450					
$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \text{mg/L PO}_4\text{-P}$	_	80					
0.2-7.2 mmol/L OH ⁻ (1 syringe filling)	_	200					
0.6-25.0 °e / 0-3.6 mmol/L Ca ²⁺ (1 syringe filling)	-	200					
0–10.0 mg/L O ₂ (1 syringe filling)	-	100					
-	0.5–8.0 mg/L NH ₄ +	50	VISOCOLOR®				
=	0.04-2.00 mg/L Fe	100	Reagent case for environ-				
=	4-60 mg/L NO ₃ -	110	mental analysis				
-	0.02-0.50 mg/L NO ₂ -	120					
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	_	450					
=	0.2-3.0 mg/L PO ₄ -P	80					
0.6-25.0 °e/0-7.2 mmol/L H+ (1 syringe filling)	-	200					
$0.6-25.0 ^{\circ}\text{e}/0-3.6 \text{mmol/L Ca}^{2+}$ (1 syringe filling)	-	200					
-	0.4-17.5 °e/5-250 mg/L CaCO ₃	100	VISOCOLOR®				
-	0.10-2.00 mg/L Cl ₂	150	Reagent case with PF-3				
-	10-100 mg/L Cya	100	Pool (Cl ₂ liquid)				
-	pH 6.1–8.4	150					
-	0.4-17.5 °e/5-250 mg/L CaCO ₃	100	VISOCOLOR®				
-	0.05-6.00 mg/L Cl ₂	200	Reagent case with PF-3				
-	10-100 mg/L Cya	100	Pool (Cl ₂ solid)				
-	pH 6.1–8.4	150					

Reagent case	REF	Dimensions	Application	GHS	PF-3	PF-12 ^{Plus}	Test
■ VISOCOLOR® Reagent case with PF-3 Drinking Water (Cl₂ liquid)	934 124	340 x 275 x 83 mm	Drinking water	1	•		VISOCOLOR® ECO Chlorine 2, free + total VISOCOLOR® ECO Chlorine dioxide VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Fluoride VISOCOLOR® ECO pH 6.0-8.2
■ VISOCOLOR® Reagent case with PF-3 Drinking Water (Cl₂ solid)	934 125	340 x 275 x 83 mm	Drinking water	•	•		VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Chlorine dioxide VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Fluoride VISOCOLOR® ECO pH 6.0–8.2
Reagent case VISOCOLOR® School	933 100	275 x 230 x 83 mm	Schools	•			VISOCOLOR® School Ammonium VISOCOLOR® School Total hardness VISOCOLOR® School Nitrate VISOCOLOR® School Nitrite VISOCOLOR® School pH 4.0–9.0 VISOCOLOR® School Phosphate
Reagent case VISOCOLOR® Fish	933 101	275 x 230 x 83 mm	Fishing waters	•			VISOCOLOR® Fish Ammonium VISOCOLOR® Fish Total hardness VISOCOLOR® Fish Nitrate VISOCOLOR® Fish Nitrite VISOCOLOR® Fish pH 4.0–9.0 VISOCOLOR® Fish Phosphate
■ Reagent case VISOCOLOR® Fish with PF-3 Fish	934 127	395 x 295 x 106 mm	Fishing waters	•	•		QUANTOFIX® Chloride QUANTOFIX® Multi-stick for aquarium owners VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Silica VISOCOLOR® ECO Copper VISOCOLOR® ECO Copper VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 6.0–8.2 VISOCOLOR® ECO Phosphate VISOCOLOR® ECO Copper VISOCOLOR® HE Alkalinity AL 7 VISOCOLOR® HE Phosphate
■ VISOCOLOR® Reagent case for soil analysis, with accessories	931 601	500 x 420 x 175 mm	Soil	•			pH-Fix 2.0-9.0 QUANTOFIX® Ammonium QUANTOFIX® Nitrate/Nitrite VISOCOLOR® ECO Potassium VISOCOLOR® HE pH 4.0-10.0 VISOCOLOR® HE Phosphate
■ VISOCOLOR® Reagent case for soil analysis with PF-3 Soil, with accessories	934 220	500 x 420 x 175 mm	Soil	•	-		pH-Fix 2.0–9.0 QUANTOFIX® Nitrate/Nitrite VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Potassium VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Phosphate
■ VISOCOLOR® Reagent case for soil analysis with PF-3 Soil	934 210	340 x 275 x 83 mm	Soil	•	•		VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Potassium VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Phosphate

Measuring range (visual)	Measuring range (photometric)	Number of tests	Reagent cases
_	0.10-2.00 mg/L Cl ₂	150	VISOCOLOR®
-	0.20–3.80 mg/L CIO ₂	150	Reagent case with PF-3
-	0.04–2.00 mg/L Fe	100	Drinking Water (Cl ₂ liquid
- -	0.1–2.0 mg/L F ⁻ pH 6.1–8.4	150 150	
	0.05–6.00 mg/L Cl ₂	200	VISOCOLOR®
-	0.20–3.80 mg/L Cl ₂	150	Reagent case with PF-3
_	0.04–2.00 mg/L Fe	100	Drinking Water (Cl ₂ solid
-	0.1–2.0 mg/L F ⁻	150	5 (
-	pH 6.1–8.4	150	
0 · 0.2 · 0.5 · 1 · 3 mg/L NH ₄ +	-	50	Reagent case
1 drop equals 1.25 °e	-	50	VISOCOLOR® School
$0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 50 \cdot 90 \text{ mg/L NO}_3^-$	_	50	
$0 \cdot 0.02 \cdot 0.05 \cdot 0.1 \cdot 0.2 \cdot 0.5 \mathrm{mg/L} \mathrm{NO_2}^-$	-	50	
pH: 4.0 · 5.0 · 6.0 · 7.0 · 8.0 · 9.0	_	50	
0 · 0.5 · 1.5 · 3 · 6 · 15 mg/L PO ₄ 3-		50	
0 · 0.2 · 0.5 · 1 · 3 mg/L NH ₄ +	-	50	Reagent case
1 drop equals 1.25 °e	-	50 50	VISOCOLOR® Fish
$0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 50 \cdot 90 \text{ mg/L NO}_3^-$	_	50 50	
$0 \cdot 0.02 \cdot 0.05 \cdot 0.1 \cdot 0.2 \cdot 0.5 \text{ mg/L NO}_2^-$ pH: $4.0 \cdot 5.0 \cdot 6.0 \cdot 7.0 \cdot 8.0 \cdot 9.0$	_	50	
0 · 0.5 · 1.5 · 3 · 6 · 15 mg/L PO ₄ ³⁻	_	50	
0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	_	100	Reagent case
Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e	_	100	VISOCOLOR® Fish with
Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e	_	100	PF-3 Fish
pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	-	100	
-	0.1–2.5 mg/L NH ₄ +	50	
-	0.05–6.00 mg/L Cl ₂	200	
-	0.04–2.00 mg/L Fe 0.2–3.0 mg/L SiO ₂	100	
-	0.1–5.0 mg/L Cu ²⁺	80 100	
_	4–60 mg/L NO ₃ ⁻	110	
=	0.02–0.50 mg/L NO ₂ ⁻	120	
-	pH 6.1–8.4	100	
-	0.2–5.0 mg/L PO ₄ -P	80	
-	1–8 mg/L O ₂	50	
0.2–7.2 mmol/L OH ⁻ (1 syringe filling)	-	200	
0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L PO ₄ -P	-	300	
pH: 2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	100	VISOCOLOR®
0 · 10 · 25 · 50 · 100 · 200 · 400 mg/L NH ₄ + Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ -	-	100	Reagent case for soil
Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂	_	100 100	analysis, with accessori
2 · 3 · 4 · 6 · 8 · 10 · 15 mg/L K ⁺	_	60	
pH: 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	_	500	
0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L PO ₄ -P	_	100	
pH: 2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	100	VISOCOLOR®
Nitrate: $0 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \cdot 250 \cdot 500 \text{ mg/L NO}_3^-$	-	100	Reagent case for soil
Nitrite: $0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 40 \cdot 80 \text{ mg/L NO}_2^-$		100	analysis with PF-3 Soil,
-	0.1–2.5 mg/L NH ₄ ⁺	50	with accessories
-	2–25 mg/L K ⁺	60	
- -	4–60 mg/L NO ₃ ⁻ 0.2–5.0 mg/L PO ₄ -P	110 80	
 	0.1–2.5 mg/L NH ₄ +	50	VISOCOLOR®
-	2–25 mg/L K ⁺	60	Reagent case for soil
-	4–60 mg/L NO ₃ ⁻	110	analysis with PF-3 Soil
	0.2-5.0 mg/L PO ₄ -P	80	•

Reagent cases www.mn-net.com www.mn-net.com

Reagent cases for individual solutions

Compact laboratories for mobile analysis

With our reagent case program we also fulfill individual customer requests. The user can choose between reagent case versions with tests for visual evaluation and possible combinations with the compact photometers PF-3 and PF-12 $^{\!\!Plus}$.

The reagent cases for individual solutions offer a flexible combination of all VISOCOLOR® tests, pH-indicator papers, pH-Fix indicator strips, qualitative test papers and semi-quantitative QUANTOFIX® test strips as well as useful accessories.

The NANOCOLOR® reagent cases can also be equipped with NANOCOLOR® tube tests and the heating blocks NANOCOLOR® VARIO C2, NANOCOLOR® VARIO C2 M and NANOCOLOR® VARIO Mini.

Therefore, the reagent cases for individual solutions are versatilely applicable in a variety of areas in water and waste water analysis.

Good to know

Starting at a minimum quantity of 50 cases, we offer entirely individual solutions in different sizes with a foam inlay designed exactly to the customers' specifications and needs.

Good to know

For questions about individual solution of the reagent cases, we are pleased to be of service.

Ordering information

Reagent case	REF	Dimensions	KARY'	PEN MAN	PEN YEN	AN ANT	be in 1200	
■ Test paper analysis case	913 990	280 x 220 x 80 mm						
■ VISOCOLOR® ECO Reagent case	931 303	340 x 275 x 83 mm						
VISOCOLOR [®] Reagent case	931 305	450 x 360 x 140 mm						
■ VISOCOLOR® Reagent case with PF-3 Pool	934 102	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Drinking Water	934 402	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Soil	934 202	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Fish	934 602	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-12 ^{Plus}	914 351	450 x 360 x 140 mm						
■ NANOCOLOR® Reagent case with PF-3 COD	919 212	534 x 427 x 207 mm	-					
■ NANOCOLOR® Reagent case with PF-12 ^{Plus}	919 214	534 x 427 x 207 mm	-					

Reagent cases for individual solutions

NEOCO	New Properties	OR SHE'T	Ottor.	ON Hidical	J. Dade	John John John John John John John John	P OF	Original Constitution of the Constitution of t	original ori	QUE QUE	Les Les Land
											Test paper analysis case
											VISOCOLOR® ECO Reagent case
											VISOCOLOR® Reagent case
											VISOCOLOR® Reagent case with PF-3 Pool
											VISOCOLOR® Reagent case with PF-3 Drinking Water
											VISOCOLOR® Reagent case with PF-3 Soil
											VISOCOLOR® Reagent case with PF-3 Fish
											VISOCOLOR® Reagent case with PF-12 ^{Plus}
											NANOCOLOR® Reagent case with PF-3 COD
											NANOCOLOR® Reagent case with PF-12Plus

Accessories for reagent cases

The complete analysis from one source

The MACHEREY-NAGEL reagent cases are perfectly suited for mobile analysis. With our wide range of accessories they can be refilled quickly and easily.

Good to know

For general accessories for the VISOCOLOR® reagent cases see page 82

Ordering information

Description	REF	Content	GHS
Accessories for Reagent case VISOCOLOR® School			
■ VISOCOLOR® School refill pack	933 200	1 piece	
■ VISOCOLOR® School color scale	933 300	1 piece	
■ VISOCOLOR® School manual	933 150	1 piece	
Accessories for Reagent case VISOCOLOR® Fish			
■ VISOCOLOR® Fish refill pack	933 201	1 piece	
■ VISOCOLOR® Fish color scale	933 301	1 piece	
■ VISOCOLOR® Fish manual for reagent case VISOCOLOR® Fish	933 151	1 piece	
■ VISOCOLOR® Fish manual for reagent case VISOCOLOR® Fish with PF-3 Fish	933 161	1 piece	
Accessories for VISOCOLOR® Reagent cases for soil analysis			
■ 100 mL CaCl ₂ stock solution	914 612	3 pieces	
■ 100 mL CAL stock solution	914 614	4 pieces	
Reagent set VISOCOLOR® HE Phosphorus in soil	920 183	1 piece	
■ Color chart VISOCOLOR® HE Phosphorus in soil	920 383	1 piece	
■ 30 mL pyrophosphate solution	914 611	3 pieces	
■ Folded filters MN 616 1/4, 18.5 cm Ø	532 018	100 pieces	
Soil sieve (2 mm mesh size)	914 650	1 piece	
Plastic bottle 500 mL with spraying attachment	916 89	1 piece	
■ Balance 250 g	914 651	1 piece	
Sample beaker 250 mL	914 652	5 pieces	
Wide neck bottles 500 mL for soil samples	914 653	5 pieces	
Shaking bottle 300 mL	914 654	5 pieces	
Measuring cylinder 100 mL with base	914 655	2 pieces	
Plastic scoop	914 656	1 piece	
■ Funnel 80 mm Ø, plastic	914 657	3 pieces	
Sedimentation tubes with screw caps	914 659	2 pieces	
Syringe 10 mL with tube	914 660	1 piece	
■ Manual for VISOCOLOR® Reagent cases for soils analysis	914 602	1 piece	
■ Thermometer -10 °C to +60 °C	914 497	1 piece	

GHS: Global harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

NANOCOLOR® Reagent case Mobile analysis for sewage plants

Mobile photometric analysis

- Compact photometer PF-12^{Plus} for flexible analysis
- Heating block NANOCOLOR® VARIO C2 for fast sample digestions
- Highest transport safety due to robust case
- Tube tests for precise results

Annex

VANOCOLOR® App	160
Barcode register	162
ndex of catalog numbers	170
Legal notices	174

NANOCOLOR® App

All information at a glance

The NANOCOLOR® App allows scanning of 2D barcodes on NANOCOLOR® kits and uses the information included to provide fast and easy access to all data that are important for these tests. Batch-specific certificates are automatically generated from the analytical data in the 2D barcode.

Easy barcode reading

The packages of our *NANOCOLOR*[®] tube tests are equipped with a 2D barcode that contains all relevant information. The app reads this barcode, analyzes the information stored therein and directly displays the test name, item number and expiration date.

Create certificates

Based on the data in the 2D barcode, the app displays information on the analytical performance of the test. It can also create batch specific certificates as pdf files which can be viewed, shared or printed.

Read instruction leaflets

After choosing the option "instruction leaflet", the app shows the instruction leaflet as pdf. Important test information, such as analytical interferences or compliance with ISO methods is immediately available even if the test kit's instruction leaflet has already been disposed.

View pictograms

For most NANOCOLOR® tube tests instructions are available in form of pictograms. These provide basic information and allow performing the test without reading the instruction leaflet. They especially help the less experienced users, but also serve "old hands" as a regular reminder. The app provides quick access to these pictograms and displays them in the usual optimum quality.

Open Safety Data Sheets

Safety Data Sheets contain important information about potential hazards and their prevention. Even without Internet connection, the *NANOCOLOR®* App allows direct access to these documents so that necessary measures can immediately be taken. As pdf file the SDS can be shared at any time.

Everything offline

An Internet connection is only needed for occasional updates or sending of documents. Therefore, the app works especially well even at remote places.

How it's done

Information fast and simple

Scan barcode

Dowload app

Get information

Good to know

The 2D barcodes printed in this catalog allow direct access to all information and lot independent sample certificates.

Fast

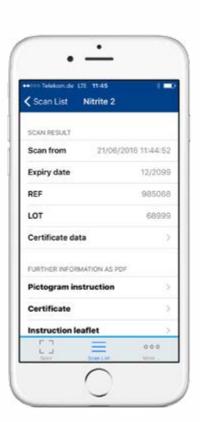
■ All information at a glance

Easy

- Scan the barcode with your smartphone
- Select information of interest
- View, share or print directly

Safe

- Up to date anytime anywhere
- Direct access to Safety Data Sheets
- All information available offline



Information fast an easy – with the NANOCOLOR® App

The NANOCOLOR® App (see page 160) allows fast and easy access to instruction leaflets, Safety Data Sheets and pictogram instructions. Further the app generates sample certificates from the barcodes printed here.


NANOCOLOR® Aluminum 07 REF 985 098

NANOCOLOR® Ammonium 3 REF 985 003

NANOCOLOR® Ammonium 10 REF 985 004

NANOCOLOR® Ammonium 50 REF 985 005

NANOCOLOR® Ammonium 100 REF 985 008

NANOCOLOR® Ammonium 200 REF 985 006

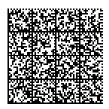
NANOCOLOR® Ammonium 2000 REF 985 002

■ NANOCOLOR® Anionic surfactants 4 REF 985 032

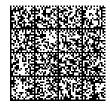
■ NANOCOLOR® BOD₅-TT REF 985 825

NANOCOLOR® Cadmium 2 REF 985 014

■ NANOCOLOR® Carbonate hardness 15 REF 985 015


■ NANOCOLOR® Cationic surfactants 4 REF 985 034

- NANOCOLOR® Chloride 50 REF 985 021
- NANOCOLOR® Chloride 200 REF 985 019
- NANOCOLOR® Chlorine / Ozone 2 REF 985 017


- NANOCOLOR® Chromate 5 REF 985 024
- NANOCOLOR® total Chromium 2 REF 985 059

■ NANOCOLOR® COD 40 REF 985 027

■ NANOCOLOR® COD 60 REF 985 022

■ NANOCOLOR® COD 160 REF 985 026

■ NANOCOLOR® COD 300 REF 985 033

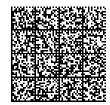
■ NANOCOLOR® COD 600 REF 985 030

■ NANOCOLOR® COD 1500 REF 985 029

■ NANOCOLOR® COD 4000 REF 985 011

■ NANOCOLOR® COD 10000 REF 985 023


■ NANOCOLOR® COD 15000 REF 985 028


■ NANOCOLOR® COD 60000 REF 985 012

■ NANOCOLOR® COD LR 150 REF 985 036

■ NANOCOLOR® COD HR 1500 REF 985 038

■ NANOCOLOR® org. Complexing agents 10 REF 985 052

■ NANOCOLOR® Copper 5 REF 985 053

■ NANOCOLOR® Copper 7 REF 985 054

■ *NANOCOLOR*® Cyanide 08 REF 985 031

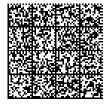
■ NANOCOLOR® DEHA 1 REF 985 035

■ NANOCOLOR® Fluoride 2 REF 985 040

■ *NANOCOLOR®* Formaldehyde 8 REF 985 041

■ NANOCOLOR® Formaldehyde 10 REF 985 046

■ NANOCOLOR® Hardness Ca/Mg REF 985 044



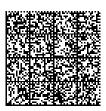
■ NANOCOLOR® Iron 3 REF 985 037

■ NANOCOLOR® Manganese 10 REF 985 058

■ NANOCOLOR® Molybdenum 40 REF 985 056

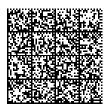
■ NANOCOLOR® Nickel 4 REF 985 071

■ NANOCOLOR® Nickel 7 REF 985 061



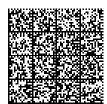
■ NANOCOLOR® Nitrate 8 REF 985 065

■ NANOCOLOR® Nitrate 250 REF 985 066


■ NANOCOLOR® Nitrite 2 REF 985 068

■ NANOCOLOR® Nitrite 4 REF 985 069

■ NANOCOLOR® total Nitrogen TN_b 22 REF 985 083



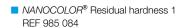
- NANOCOLOR® total Nitrogen TN_b 60 REF 985 092
- NANOCOLOR® total Nitrogen TN_b 220 REF 985 088
- NANOCOLOR® Organic acids 3000 REF 985 050



- NANOCOLOR® ortho- and total Phosphate 1 REF 985 076
- NANOCOLOR® ortho- and total Phosphate 5 REF 985 081
- NANOCOLOR® ortho- and total Phosphate 15 REF 985 080

- NANOCOLOR® ortho- and total Phosphate 45 REF 985 055
- NANOCOLOR® ortho- and total Phosphate 50 REF 985 079
- NANOCOLOR® ortho- and total Phosphate LR 1 REF 985 095

■ NANOCOLOR® Peroxide 2 REF 985 871


■ NANOCOLOR® POC 200 REF 985 070

■ NANOCOLOR® Potassium 50 REF 985 045


■ NANOCOLOR® Silver 3 REF 985 049

■ NANOCOLOR® Starch 100 REF 985 085

■ NANOCOLOR® Sulfate 200 REF 985 086

- NANOCOLOR® Sulfide 3 REF 985 073
- NANOCOLOR® Sulfite 10 REF 985 089
- NANOCOLOR® Sulfite 100 REF 985 090

- NANOCOLOR® Nonionic surfactants 15 REF 985 047
- NANOCOLOR® Thiocyanat 50 REF 985 091
- NANOCOLOR® Tin 3 REF 985 097

- NANOCOLOR® TOC 25 REF 985 093
- NANOCOLOR® TOC 30 REF 985 075

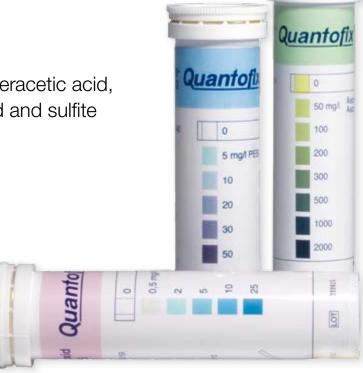
■ NANOCOLOR® TOC 60 REF 985 094

■ NANOCOLOR® TOC 300 REF 985 078

■ NANOCOLOR® TOC 600 REF 985 099

■ NANOCOLOR® Zinc 4 REF 985 096

■ NANOCOLOR® Zirconium 100 REF 985 001


Test papers and test strips Perfect analysis for food and beverage industry

Fast and easy

- Reliable results
- Efficient quality control
- Determination of pH, peracetic acid, peroxide, ascorbic acid and sulfite

	_
REF	Page
205 015	106
470 011	106
532 018	156
645 008	108
730 250	107
902 01	57
902 02	57
902 03	57
902 04	57
902 05	57
902 06	57
902 07	57
902 08	57
902 09	57
902 10	57
902 11	57
902 12	57
902 13	57
902 14	57
902 24	57
902 25	57
902 26	57
902 27	57
902 28	57
902 29	57
902 30	57
902 31	57
902 32	57
902 33	57
902 34	57
903 01	58
903 02	58
903 03	58
903 04	58
903 05	58
903 06	58
903 11	58
903 12	58
903 13	58
903 14	58
903 15	58
903 16	58
903 19	58
904 01	56
904 11	56
	-

REF	Page
904 12	56
904 13	56
904 14	56
904 15	56
904 16	56
904 17	56
904 19	56
904 20	56
904 21	56
904 22	56
904 23	56
904 24	56
905 01	58
905 02	58
905 10	58
905 11	58
906 01	31, 68
906 02	36, 70
906 03	26, 28, 68
906 04	31, 68
906 05	26, 41, 70
906 06	41, 70
906 07	42, 70
906 08	27, 66
906 09	48, 70
906 10	48, 70
906 11	38, 39, 68
906 12	42, 70
906 27	41, 70
906 30	48, 70
907 01	59
907 02	59
907 03	59
907 04	59
907 05	59
907 09	28, 66
907 10	31, 66
907 11	59
907 12	59
907 13	59
907 14	24, 66
907 21	23, 49, 68, 70
907 22	24, 68
907 23	24, 68
007.24	20.69

DEE	D
REF	Page
907 25	35, 68
907 26	35, 68
907 27	43, 70
907 28	29, 68
907 29	31, 68
907 30	37, 68
907 32	44, 70
907 33	26, 68
907 34	33, 66
907 36	40, 66
907 41	44, 66
907 42	48, 68
907 44	45, 68
907 45	45, 68
907 46	45, 68
907 47	26, 70
907 48	37, 70
907 50	33, 68
907 51	32, 68
907 52	23, 28, 66
907 53	70
907 54	28, 39, 40, 46, 70
907 55	28, 39, 40, 46, 70
907 56	28, 39, 40, 46, 70
907 58	28, 39, 40, 46, 70
907 59	23, 28, 34, 66
907 60	35, 70
907 61	45, 70
907 62	25, 68
907 63	46, 70
907 65	43, 68
908 01	22, 66
908 901	22, 66
908 903	22, 66
909 000	43
910 02	59
910 31	59
910 39	59
911 06	59
911 07	59
911 08	59
911 16	59
911 17	59

REF	Page
911 18	59
911 26	59
911 27	59
911 28	59
912 01	34, 66
912 10	34, 66
912 20	34, 66
912 21	34, 66
912 22	34, 66
912 23	34, 66
912 24	34, 66
912 39	34, 66
912 40	34, 66
912 902	34, 66
913 01	29, 62
913 03	29, 62
913 04	31, 62
913 05	37, 62
913 06	46, 64
913 07	23, 62
913 09	47, 64
913 10	48, 64
913 11	39, 62
913 12	41, 62
913 13	38, 39, 62
913 14	25, 62
913 15	24, 62
913 16	43, 62
913 17	28, 62
913 18	31, 62
913 19	41, 62
913 20	42, 62
913 21	27, 62
913 22	39, 62
913 23	23, 34, 62
913 24	27, 62
913 25	37, 62
913 26	25, 34, 64
913 27	25, 34, 64
913 28	33, 62
913 29	45, 64
913 30	35, 64
913 32	25, 62
913 33	41, 62
913 34	25, 62

907 24

29, 68

REF	Page
913 35	32, 62
913 36	23, 30, 62
913 37	43, 62
913 38	30, 39, 62
913 39	28, 62
913 40	41, 62
913 41	41, 62
913 42	41, 62
913 43	33, 62
913 44	35, 64
913 45	25, 62
913 48	33, 62
913 49	22, 40, 62
913 50	44, 64
913 51	38, 62
913 52	47, 64
913 53	64
913 918	64
913 990	154
914 351	154
914 353	150
914 444	82
914 492	82
914 495	82
914 496	82
914 497	82, 156
914 498	82
914 602	156
914 611	156
914 612	156
914 614	156
914 650	156
914 651	156
914 652	156
914 653	156
914 654	156
914 655	156
914 656	156
914 657	156
914 659	156
914 660	156
914 663	82
914 664	82
915 002	34, 80
915 003	23, 34, 80

REF	Page
915 004	27, 80
915 4	82
915 005	34, 80
915 006	22, 80
915 007	23, 80
915 008	32, 46, 80
915 009	40, 80
915 010	27, 80
915 202	80
915 203	80
915 204	80
915 205	80
915 206	80
915 207	80
915 208	80
915 209	80
915 210	80
915 498	82
915 499	82
916 01	106
916 02	106
916 03	107
916 04	108
916 05	108
916 06	108
916 08	107
916 09	107
916 10	105
916 20	106
916 21	108
916 22	142
916 23	106, 108
916 29	105, 142
916 37	107
916 38	106
916 39	106
916 42	106
916 50	106
916 52	106, 113
916 53	106
916 58	107
916 61	106
916 64	107
916 65	106
916 66	142

	III I I I I I I I I I I I I I I I I I	_
REF	Page	
916 67	142	
916 68	142	
916 71	106	
916 72	106	
916 76	106, 107	
916 77	107	
916 79	107	
916 80	82, 132, 142	
916 81	106	
916 82	106	
916 83	106	
916 84	106	
916 88	106	
916 89	106, 156	
916 90	106	
916 95	107, 113	
916 96	106	
916 111	107	_
916 113	107	
916 114	106	
916 115	107	_
916 116	108	
916 211	106	
916 212	106	
916 511	106	
916 513	106	
916 598	142	
916 908	131	_
916 909	107	_
916 910	142	
916 912	115, 146	_
916 914	107	
916 915	106, 107	_
916 916	107	_
916 917	107	
916 918	107	_
916 919	107	_
916 920	107	
916 925	107	_
916 926	107	_
916 990	108	_
916 991	108	
916 992	108	
916 993	108	
916 994	108	_

REF	Page
916 995	108
916 996	108
918 02	23, 96
918 05	24, 96
918 08	105
918 16	28, 96
918 20	27, 96
918 25	29, 96
918 30	31, 96
918 32	46, 96
918 34	46, 96
918 36	35, 96
918 44	35, 96
918 045	108
918 48	44, 96
918 50	105
918 51	29, 96
918 53	31, 96
918 60	36, 96
918 62	37, 96
918 63	38, 96
918 65	38, 96
918 67	39, 96
918 72	42, 90, 107
918 073	107
918 75	41, 96
918 77	42, 96
918 78	42, 96
918 85	40, 96
918 88	45, 96
918 95	48, 96
918 101	36, 96
918 131	27, 96
918 142	33, 96
918 163	28, 96
918 571	107
918 572	107
918 911	107
918 912	108
918 929	108
918 932	108
918 937	108
918 939	108
918 973	108
918 978	105

REF	Page
918 979	105
918 993	107
918 994	107
918 995	107
919 02	132
919 06	132
919 16	132
919 18	132
919 32	132
919 33	132
919 34	132
919 35	132
919 37	132
919 40	132
919 41	132
919 50	132
919 120	131
919 121	131
919 122	131
919 123	132
919 127	131
919 134	131
919 136	132
919 140	131
919 142	131
919 143	131
919 144	131
919 149	131
919 156	132, 142
919 158	131
919 201	132
919 212	154
919 214	154
919 220	132
919 221	132
919 250	12, 122
919 252	131
919 300	14, 135
919 309	142
919 310	142
919 330	14, 139
919 340	12, 120
919 341	12, 120
919 342	12, 120
919 343	12, 120

REF	Page
919 345	12, 120
919 350	14, 135
919 350.1	14, 135
919 380	14, 137
919 381	142
919 390	132, 142
919 391	132
919 392	131
919 500	12, 124
919 501	131
919 600	12, 129
919 601	131
919 603	131
919 604	131
919 605	132
919 606	132
919 624	131
919 626	131
919 650	12, 129
919 651	132
919 652	131
919 654	132
919 655	132
919 656	132
919 681	132
919 682	132
919 686	132
919 687	132, 142
919 773	132
919 775	131
919 787	131
919 841.2	131
919 850.2	131
919 914	132
919 916	142
919 917	141
919 921	141
919 924	142
919 925	142
919 926	142
919 937	142
919 938	142
920 3	82
920 006	24, 80
020.015	20 00

	_
REF	Page
920 028	31, 80
920 040	35, 80
920 050	31, 80
920 055	36, 80
920 063	39, 80
920 074	42, 80
920 080	42, 80
920 082	42, 80
920 087	44, 80
920 106	80
920 115	80
920 128	80
920 140	80
920 150	80
920 155	80
920 163	80
920 174	80
920 180	80
920 182	80
920 183	156
920 187	80
920 383	156
920 401	82
920 402	82
921 10	54
921 11	54
921 15	54
921 18	54
921 20	54
921 21	54
921 22	54
921 25	54
921 30	54
921 31	54
921 35	54
921 37	54
921 40	54
921 50	54
921 60	54
921 70	54
921 80	54
921 90	54
925 07	100
925 010	100
925 011	100

REF	Page
925 012	100
925 013	102
925 015	102
925 016	102
925 17	100
925 018	102
925 22	100
925 24	100
925 26	100
925 28	100
925 29	100
925 68	100
925 75	100
925 76	100
925 78	100
925 82	100
925 90	100
925 701	130
925 702	130
930 65	144
930 74	144
930 889	144
930 995	108, 144
931 006	23, 76
931 008	24, 76
931 010	24, 76
931 012	27, 36, 76
931 014	23, 34, 76
931 015	28, 78
931 016	28, 78
931 018	27, 76
931 020	29, 78
931 021	28, 78
931 022	31, 78
931 023	31, 78
931 024	32, 78
931 025	35, 78
931 026	35
931 029	34, 36, 78
931 030	35, 78
931 032	43, 78
931 033	44, 78
931 035	28, 78
931 037	31, 78
931 038	36, 78

920 015

28, 80

REF	Page
931 040	37, 78
931 041	38, 78
931 044	39, 78
931 050	46, 78
931 051	46, 78
931 066	42, 78
931 084	42, 78
931 088	40, 78
931 090	28, 78
931 092	45, 78
931 094	45, 78
931 095	46, 78
931 098	48, 78
931 151	82
931 152	82
931 204	23, 76
931 206	76
931 208	76
931 210	76
931 211	26, 76
931 215	78
931 216	78
931 217	28, 78
931 218	76
931 219	28, 78
931 220	78
931 221	78
931 222	78
931 223	78
931 224	78
931 225	78
931 226	78
931 227	33, 78
931 230	78
931 232	78
931 233	78
931 234	44, 78
931 235	78
931 237	78
931 238	78
931 240	78
931 241	78
931 244	78
931 250	78
931 251	78

REF	Page
931 266	78
931 270	42, 78
931 284	78
931 288	78
931 290	78
931 292	78
931 294	78
931 298	78
931 301	150
931 303	154
931 304	150
931 305	154
931 501	82
931 502	82
931 503	82, 131
931 601	152
931 929	82
933 100	152
933 101	152
933 150	156
933 151	156
933 161	156
933 200	156
933 201	156
933 300	156
933 301	156
934 001	82, 131
934 102	154
934 118	150
934 119	150
934 124	152
934 125	152
934 127	152
934 202	154
934 210	152
934 220	152
934 402	154
934 602	154
935 012	24, 74
935 016	23, 34, 74
935 019	28, 74
935 042	34, 74
935 065	38, 74
935 066	39, 74
935 075	42, 74

REF	Page
935 079	42, 74
935 080	34, 74
940 006	115, 146
940 008	146
940 009	146
940 014	146
945 002	114
945 003	114
945 006	114
945 007	114
945 013	115, 146
945 021	114
945 022	114
945 023	114
945 024	114
945 025	114
945 601	115
945 602	115
945 603	115
945 604	115
945 608	115
963 026	30, 88
963 029	30, 88
	107
970 001	39, 113
970 002	39, 113
970 101	113
970 111	113
970 112	113
970 113	113
970 114	113
970 115	113
970 116	113
970 902	113
970 903	113
985 001	49, 92
985 002	24, 88
985 003	24, 88
985 004	24, 88
985 005	24, 88
985 006	24, 88
985 007	24, 88
985 008	24, 88
985 009	36, 90
985 011	30, 88

REF	Page
985 012	30, 88
985 014	27, 88
985 015	23, 34, 88
985 017	28, 40, 88
985 018	28, 88
985 019	27, 88
985 021	27, 88
985 022	30, 88
985 023	30, 88
985 024	29, 88
985 026	30, 88
985 027	30, 88
985 028	30, 88
985 029	30, 88
985 030	30, 88
985 031	31, 90
985 032	46, 92
985 033	30, 88
985 034	46, 92
985 035	32, 90
985 036	30, 88
985 037	35, 90
985 038	30, 88
985 040	33, 90
985 041	33, 90
985 043	27, 34, 36, 90
985 044	27, 34, 36, 90
985 045	43, 92
985 046	33, 90
985 047	46, 92
985 049	44, 92
985 050	40, 90
985 052	32, 88
985 053	31, 88
985 055	42, 92
985 056	37, 90
985 057	35, 90
985 058	36, 90
985 059	29, 88
985 062	45, 92
985 064	38, 90
985 065	38, 90
985 066	38, 90
985 068	39, 90
985 069	39, 90

Legal notices

REF	Page
985 070	43, 92
985 071	37, 90
985 073	45, 92
985 074	41, 90
985 075	47, 92
985 076	42, 90
985 078	47, 92
985 079	42, 92
985 080	42, 92
985 081	42, 92

REF	Page
985 082	40, 90
985 083	39, 90
985 084	34, 92
985 085	45, 92
985 086	45, 92
985 087	45, 92
985 088	39, 90
985 089	46, 92
985 090	46, 92
985 091	46, 92

REF	Page
985 092	39, 90
985 093	47, 92
985 094	47, 92
985 095	42, 92
985 096	48, 92
985 097	47, 92
985 098	23, 88
985 099	47, 92
985 822	26, 88
985 825	26, 88

REF	Page
985 838	32, 90
985 859	37, 90
985 871	41, 90
985 890	44, 92

Image credits

Copyright	page
andrey7777777 - Fotolia	23
Angelika Möthrath - Fotolia	55
Bing_Somsak - Fotolia	145
Björn Wylezich - Fotolia	25
cosma - Fotolia	22
dedalo03 - Fotolia	49
Dmytro Sukharevskyy - Fotolia	37

Copyright	page
emer - Fotolia	43
euthymia - Fotolia	41
fotomaster - Fotolia	38
lifeonwhite.com - Fotolia	135
mariusz szczygieł - Fotolia	83
M. Schuppich - Fotolia	31
nexusseven - Fotolia	28

Copyright	page
olga demchishina - Fotolia	69
tarasov_vl - Fotolia	109
Thomas Brostrom - Fotolia	48
Tim UR - Fotolia	47
trotzolga - Fotolia	34
Vitalii Hulai - Fotolia	43
Yuri Arcurs - Fotolia	29

Copyright
Android, Google Play and the Google Play logo are trademarks of Google Inc.

Apple, the Apple logo and iPhone are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc.

Trademarks

MACHEREY-NAGEL
AQUADUR®
BioFix®
CHROMABOND®
CHROMAFIL®
NANOCOLOR®
PEHANON®
VISOCOLOR®

Other comapnys	
Ashland	Polystabil [®]
Merck	HY-LiTE®
Sigma-Aldrich	Triton®

	· Printed in Germany
	2
	1
	/6/0/03.2017 PD · Printe
	9/1
	s en14
	id Tests
	Rapid
	100003
	Ē
ı	ш —

Distributed by:

www.mn-net.com

MACHEREY-NAGEL

MACHEREY-NAGEL GmbH & Co. KG \cdot Neumann-Neander-Str. 6–8 \cdot 52355 Düren \cdot Germany

DE/International: CH: FR: +33 388 68 22 68 Tel.: +49 24 21 969-0 Tel.: +41 62 388 55 00 Tel.: Fax: +49 24 21 969-199 Fax: +41 62 388 55 05 Fax: +33 388 51 76 88 E-mail: info@mn-net.com E-mail: sales-ch@mn-net.com E-mail: sales-fr@mn-net.com

